Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To calculate the heat released when 37.0 grams of copper cools from 55.5°C to 22.5°C, follow these steps:
1. Identify and write down the known values:
- Mass of the copper (m): \( 37.0 \, \text{g} \)
- Specific heat capacity of copper (c): \( 0.0920 \, \text{Cal/g} \cdot {}^\circ \text{C} \)
- Initial temperature (T\(_\text{initial}\)): \( 55.5 \, {}^\circ \text{C} \)
- Final temperature (T\(_\text{final}\)): \( 22.5 \, {}^\circ \text{C} \)
2. Calculate the change in temperature (\(\Delta T\)):
[tex]\[ \Delta T = \text{T}_\text{initial} - \text{T}_\text{final} \][/tex]
[tex]\[ \Delta T = 55.5 \, {}^\circ \text{C} - 22.5 \, {}^\circ \text{C} \][/tex]
[tex]\[ \Delta T = 33.0 \, {}^\circ \text{C} \][/tex]
3. Use the formula for heat transfer:
[tex]\[ Q = m \times c \times \Delta T \][/tex]
where
- \( Q \) is the heat released,
- \( m \) is the mass,
- \( c \) is the specific heat capacity,
- \( \Delta T \) is the change in temperature.
4. Substitute the known values into the formula:
[tex]\[ Q = 37.0 \, \text{g} \times 0.0920 \, \text{Cal/g} \cdot {}^\circ \text{C} \times 33.0 \, {}^\circ \text{C} \][/tex]
5. Calculate the heat released:
[tex]\[ Q = 37.0 \times 0.0920 \times 33.0 \][/tex]
[tex]\[ Q \approx 112.332 \, \text{Cal} \][/tex]
Therefore, the heat released as 37.0 grams of copper cools from 55.5°C to 22.5°C is approximately 112.332 Calories.
1. Identify and write down the known values:
- Mass of the copper (m): \( 37.0 \, \text{g} \)
- Specific heat capacity of copper (c): \( 0.0920 \, \text{Cal/g} \cdot {}^\circ \text{C} \)
- Initial temperature (T\(_\text{initial}\)): \( 55.5 \, {}^\circ \text{C} \)
- Final temperature (T\(_\text{final}\)): \( 22.5 \, {}^\circ \text{C} \)
2. Calculate the change in temperature (\(\Delta T\)):
[tex]\[ \Delta T = \text{T}_\text{initial} - \text{T}_\text{final} \][/tex]
[tex]\[ \Delta T = 55.5 \, {}^\circ \text{C} - 22.5 \, {}^\circ \text{C} \][/tex]
[tex]\[ \Delta T = 33.0 \, {}^\circ \text{C} \][/tex]
3. Use the formula for heat transfer:
[tex]\[ Q = m \times c \times \Delta T \][/tex]
where
- \( Q \) is the heat released,
- \( m \) is the mass,
- \( c \) is the specific heat capacity,
- \( \Delta T \) is the change in temperature.
4. Substitute the known values into the formula:
[tex]\[ Q = 37.0 \, \text{g} \times 0.0920 \, \text{Cal/g} \cdot {}^\circ \text{C} \times 33.0 \, {}^\circ \text{C} \][/tex]
5. Calculate the heat released:
[tex]\[ Q = 37.0 \times 0.0920 \times 33.0 \][/tex]
[tex]\[ Q \approx 112.332 \, \text{Cal} \][/tex]
Therefore, the heat released as 37.0 grams of copper cools from 55.5°C to 22.5°C is approximately 112.332 Calories.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.