Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

? Question

Rewrite the equation to represent the resistance of resistor [tex]$2, R_2$[/tex], in terms of [tex]$R_T$[/tex] and [tex]$R_1$[/tex].

A. [tex]$R_2 = \frac{R_T - R_1}{R_T R_2}$[/tex]
B. [tex]$R_2 = \frac{R_T - R_3}{R_1 - 1}$[/tex]
C. [tex]$R_2 = \frac{R_T - R_1}{R_1 - R_T}$[/tex]
D. [tex]$R_2 = \frac{R_1 + R_2}{R_T R_2}$[/tex]

Sagot :

To rewrite the equation to express the resistance of resistor \(R_2\) in terms of \(R_\tau\) and \(R_1\), we will start with the given equation:
[tex]\[ R_2 = \frac{R_\tau - R_1}{R_\tau R_2} \][/tex]

To isolate \(R_2\), follow these steps:

1. Multiply both sides of the equation by \(R_\tau R_2\) to eliminate the denominator on the right-hand side:
[tex]\[ R_2 \cdot R_\tau R_2 = R_\tau - R_1 \][/tex]

2. This simplifies to:
[tex]\[ R_2^2 \cdot R_\tau = R_\tau - R_1 \][/tex]

3. Divide both sides of the equation by \(R_\tau\) to isolate \(R_2^2\) on the left-hand side:
[tex]\[ R_2^2 = \frac{R_\tau - R_1}{R_\tau} \][/tex]

4. Take the square root of both sides to solve for \(R_2\):
[tex]\[ R_2 = \sqrt{\frac{R_\tau - R_1}{R_\tau}} \][/tex]

Therefore, the resistance of resistor \(R_2\) in terms of \(R_\tau\) and \(R_1\) is:
[tex]\[ R_2 = \sqrt{\frac{R_\tau - R_1}{R_\tau}} \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.