Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine which equation represents a line that is perpendicular to \( y = -2x + 4 \) and passes through the point \( (4, 2) \), we'll follow these steps:
1. Find the slope of the given line: The given line is \( y = -2x + 4 \). This is in the slope-intercept form \( y = mx + b \), where \( m \) is the slope. By comparison, the slope \( m \) of the given line is \(-2\).
2. Determine the slope of the perpendicular line: The slope of a line perpendicular to another line is the negative reciprocal of the slope of the original line. For the given slope \(-2\), the negative reciprocal is:
[tex]\[ \text{Perpendicular slope} = -\frac{1}{-2} = \frac{1}{2} \][/tex]
3. Use the point-slope form to find the equation: The point-slope form of a line is given by:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
where \( m \) is the slope and \( (x_1, y_1) \) is a point on the line. Here, the point \( (4, 2) \) and the slope \( \frac{1}{2} \) will be used. Substituting these values into the point-slope form yields:
[tex]\[ y - 2 = \frac{1}{2}(x - 4) \][/tex]
4. Simplify to the slope-intercept form: We need to convert the equation to the slope-intercept form \( y = mx + b \).
[tex]\[ y - 2 = \frac{1}{2}(x - 4) \][/tex]
Distribute the \( \frac{1}{2} \) on the right-hand side:
[tex]\[ y - 2 = \frac{1}{2}x - 2 \][/tex]
Now, add 2 to both sides to solve for \( y \):
[tex]\[ y = \frac{1}{2}x \][/tex]
Therefore, the equation that represents a line perpendicular to \( y = -2x + 4 \) and passing through the point \( (4, 2) \) is:
[tex]\[ \boxed{y = \frac{1}{2}x} \][/tex]
Among the given options, Choice A [tex]\( y = \frac{1}{2} x \)[/tex] is the correct answer.
1. Find the slope of the given line: The given line is \( y = -2x + 4 \). This is in the slope-intercept form \( y = mx + b \), where \( m \) is the slope. By comparison, the slope \( m \) of the given line is \(-2\).
2. Determine the slope of the perpendicular line: The slope of a line perpendicular to another line is the negative reciprocal of the slope of the original line. For the given slope \(-2\), the negative reciprocal is:
[tex]\[ \text{Perpendicular slope} = -\frac{1}{-2} = \frac{1}{2} \][/tex]
3. Use the point-slope form to find the equation: The point-slope form of a line is given by:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
where \( m \) is the slope and \( (x_1, y_1) \) is a point on the line. Here, the point \( (4, 2) \) and the slope \( \frac{1}{2} \) will be used. Substituting these values into the point-slope form yields:
[tex]\[ y - 2 = \frac{1}{2}(x - 4) \][/tex]
4. Simplify to the slope-intercept form: We need to convert the equation to the slope-intercept form \( y = mx + b \).
[tex]\[ y - 2 = \frac{1}{2}(x - 4) \][/tex]
Distribute the \( \frac{1}{2} \) on the right-hand side:
[tex]\[ y - 2 = \frac{1}{2}x - 2 \][/tex]
Now, add 2 to both sides to solve for \( y \):
[tex]\[ y = \frac{1}{2}x \][/tex]
Therefore, the equation that represents a line perpendicular to \( y = -2x + 4 \) and passing through the point \( (4, 2) \) is:
[tex]\[ \boxed{y = \frac{1}{2}x} \][/tex]
Among the given options, Choice A [tex]\( y = \frac{1}{2} x \)[/tex] is the correct answer.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.