Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To find the wavelength of light required to excite an electron in a hydrogen atom from level \( n = 1 \) to \( n = 2 \), we will follow these steps:
1. Calculate the energy of the electron at the initial and final energy levels.
The energy of an electron in a hydrogen atom can be calculated using the formula:
[tex]\[ E_n = -2.178 \times 10^{-18} \left(\frac{z^2}{n^2}\right) \text{J} \][/tex]
Here, \( z \) is the atomic number (for hydrogen, \( z = 1 \)), and \( n \) is the principal quantum number.
For the initial energy level \( n_1 = 1 \):
[tex]\[ E_{initial} = -2.178 \times 10^{-18} \left(\frac{1^2}{1^2}\right) = -2.178 \times 10^{-18} \text{J} \][/tex]
For the final energy level \( n_2 = 2 \):
[tex]\[ E_{final} = -2.178 \times 10^{-18} \left(\frac{1^2}{2^2}\right) = -2.178 \times 10^{-18} \left(\frac{1}{4}\right) = -8.712 \times 10^{-19} \text{J} \][/tex]
Simplification of the given constants confirms this value:
[tex]\[ -8.712 \times 10^{-18} \text{J} \][/tex]
2. Calculate the energy difference (\( \Delta E \)) between the initial and final energy levels.
[tex]\[ \Delta E = E_{final} - E_{initial} \][/tex]
Substituting the values:
[tex]\[ \Delta E = -8.712 \times 10^{-18} \text{J} - (-2.178 \times 10^{-18} \text{J}) \][/tex]
[tex]\[ \Delta E = -8.712 \times 10^{-18} \text{J} + 2.178 \times 10^{-18} \text{J} \][/tex]
[tex]\[ \Delta E = -6.534 \times 10^{-18} \text{J} \][/tex]
3. Calculate the wavelength of the light (\( \lambda \)) using the energy difference.
The relationship between the energy difference and the wavelength of light is given by the equation:
[tex]\[ E = \frac{h \cdot c}{\lambda} \][/tex]
Rearranging this to solve for \( \lambda \):
[tex]\[ \lambda = \frac{h \cdot c}{| \Delta E |} \][/tex]
Substituting the values \( h = 6.62 \times 10^{-34} \text{Js} \), \( c = 3.0 \times 10^8 \text{m/s} \), and \( \Delta E = -6.534 \times 10^{-18} \text{J} \):
[tex]\[ \lambda = \frac{6.62 \times 10^{-34} \text{Js} \cdot 3.0 \times 10^8 \text{m/s}}{6.534 \times 10^{-18} \text{J}} \][/tex]
This results in:
[tex]\[ \lambda \approx 3.039 \times 10^{-8} \text{m} \][/tex]
Further simplifying and converting, we get:
[tex]\[ \lambda = 3.039 \times 10^{-8} \text{m} \][/tex]
Hence, the wavelength of light required to excite an electron in a hydrogen atom from level [tex]\( n = 1 \)[/tex] to [tex]\( n = 2 \)[/tex] is approximately [tex]\( 3.039 \times 10^{-8} \text{m} \)[/tex].
1. Calculate the energy of the electron at the initial and final energy levels.
The energy of an electron in a hydrogen atom can be calculated using the formula:
[tex]\[ E_n = -2.178 \times 10^{-18} \left(\frac{z^2}{n^2}\right) \text{J} \][/tex]
Here, \( z \) is the atomic number (for hydrogen, \( z = 1 \)), and \( n \) is the principal quantum number.
For the initial energy level \( n_1 = 1 \):
[tex]\[ E_{initial} = -2.178 \times 10^{-18} \left(\frac{1^2}{1^2}\right) = -2.178 \times 10^{-18} \text{J} \][/tex]
For the final energy level \( n_2 = 2 \):
[tex]\[ E_{final} = -2.178 \times 10^{-18} \left(\frac{1^2}{2^2}\right) = -2.178 \times 10^{-18} \left(\frac{1}{4}\right) = -8.712 \times 10^{-19} \text{J} \][/tex]
Simplification of the given constants confirms this value:
[tex]\[ -8.712 \times 10^{-18} \text{J} \][/tex]
2. Calculate the energy difference (\( \Delta E \)) between the initial and final energy levels.
[tex]\[ \Delta E = E_{final} - E_{initial} \][/tex]
Substituting the values:
[tex]\[ \Delta E = -8.712 \times 10^{-18} \text{J} - (-2.178 \times 10^{-18} \text{J}) \][/tex]
[tex]\[ \Delta E = -8.712 \times 10^{-18} \text{J} + 2.178 \times 10^{-18} \text{J} \][/tex]
[tex]\[ \Delta E = -6.534 \times 10^{-18} \text{J} \][/tex]
3. Calculate the wavelength of the light (\( \lambda \)) using the energy difference.
The relationship between the energy difference and the wavelength of light is given by the equation:
[tex]\[ E = \frac{h \cdot c}{\lambda} \][/tex]
Rearranging this to solve for \( \lambda \):
[tex]\[ \lambda = \frac{h \cdot c}{| \Delta E |} \][/tex]
Substituting the values \( h = 6.62 \times 10^{-34} \text{Js} \), \( c = 3.0 \times 10^8 \text{m/s} \), and \( \Delta E = -6.534 \times 10^{-18} \text{J} \):
[tex]\[ \lambda = \frac{6.62 \times 10^{-34} \text{Js} \cdot 3.0 \times 10^8 \text{m/s}}{6.534 \times 10^{-18} \text{J}} \][/tex]
This results in:
[tex]\[ \lambda \approx 3.039 \times 10^{-8} \text{m} \][/tex]
Further simplifying and converting, we get:
[tex]\[ \lambda = 3.039 \times 10^{-8} \text{m} \][/tex]
Hence, the wavelength of light required to excite an electron in a hydrogen atom from level [tex]\( n = 1 \)[/tex] to [tex]\( n = 2 \)[/tex] is approximately [tex]\( 3.039 \times 10^{-8} \text{m} \)[/tex].
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.