Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To solve the limit \(\lim _{x \rightarrow 2}\left\{\frac{x^2+1}{x+1}\right\}\), let's follow through the steps in detail.
1. Substitute \(x = 2\) into the function: First, we need to see if direct substitution works:
[tex]\[ \frac{(2)^2 + 1}{2 + 1} = \frac{4 + 1}{3} = \frac{5}{3} \][/tex]
Hence, after substituting \(x = 2\) directly into the function \( \frac{x^2 + 1}{x + 1} \), we obtain:
[tex]\[ \frac{5}{3} \][/tex]
2. Check for undefined points or indeterminate forms: There are no points of discontinuity or indeterminate forms like \( \frac{0}{0} \) or \( \frac{\infty}{\infty} \) occurring which would require further analysis (e.g., factorization, L'Hôpital's rule). The function \( \frac{x^2 + 1}{x + 1} \) is defined and continuous at \( x = 2 \).
3. Conclusion: Since direct substitution was valid and there were no complications (e.g., discontinuities), we conclude that the limit exists and is equal to:
[tex]\[ \lim _{x \rightarrow 2}\left\{\frac{x^2+1}{x+1}\right\} = \frac{5}{3} \][/tex]
So, the result of the limit is:
[tex]\[ \frac{5}{3} \][/tex]
This completes the evaluation of the limit.
1. Substitute \(x = 2\) into the function: First, we need to see if direct substitution works:
[tex]\[ \frac{(2)^2 + 1}{2 + 1} = \frac{4 + 1}{3} = \frac{5}{3} \][/tex]
Hence, after substituting \(x = 2\) directly into the function \( \frac{x^2 + 1}{x + 1} \), we obtain:
[tex]\[ \frac{5}{3} \][/tex]
2. Check for undefined points or indeterminate forms: There are no points of discontinuity or indeterminate forms like \( \frac{0}{0} \) or \( \frac{\infty}{\infty} \) occurring which would require further analysis (e.g., factorization, L'Hôpital's rule). The function \( \frac{x^2 + 1}{x + 1} \) is defined and continuous at \( x = 2 \).
3. Conclusion: Since direct substitution was valid and there were no complications (e.g., discontinuities), we conclude that the limit exists and is equal to:
[tex]\[ \lim _{x \rightarrow 2}\left\{\frac{x^2+1}{x+1}\right\} = \frac{5}{3} \][/tex]
So, the result of the limit is:
[tex]\[ \frac{5}{3} \][/tex]
This completes the evaluation of the limit.
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.