Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Sure, let's go through each sum step-by-step to determine which one is an irrational number.
### Sum (a): \(2.5 + 3\)
First, we add the numbers:
[tex]\[ 2.5 + 3 = 5.5 \][/tex]
The number 5.5 is a finite decimal, hence it is a rational number.
### Sum (b): \(\sqrt{4} + 5\)
First, we need to evaluate \(\sqrt{4}\):
[tex]\[ \sqrt{4} = 2 \][/tex]
So the sum is:
[tex]\[ 2 + 5 = 7 \][/tex]
The number 7 is an integer and, therefore, a rational number.
### Sum (c): \( \frac{10}{3} + \frac{21}{5} \)
First, we convert the mixed fractions to improper fractions:
[tex]\[ 3 \frac{1}{3} = \frac{10}{3} \][/tex]
[tex]\[ 4 \frac{1}{5} = \frac{21}{5} \][/tex]
We then add these fractions:
[tex]\[ \frac{10}{3} + \frac{21}{5} \][/tex]
To add these fractions, we need a common denominator:
[tex]\[ \frac{10}{3} = \frac{50}{15} \][/tex]
[tex]\[ \frac{21}{5} = \frac{63}{15} \][/tex]
So the sum is:
[tex]\[ \frac{50}{15} + \frac{63}{15} = \frac{113}{15} \][/tex]
Converting this back into decimal:
[tex]\[ \frac{113}{15} = 7.533333\ldots \][/tex]
The number 7.533333\ldots is a finite or repeating decimal, hence it is a rational number.
### Sum (d): \(\sqrt{7} + \sqrt{7}\)
Finally, we add:
[tex]\[ \sqrt{7} + \sqrt{7} = 2\sqrt{7} \][/tex]
Since \(\sqrt{7}\) is an irrational number (square roots of non-perfect squares are irrational), multiplying it by 2 does not change its irrationality. Therefore, \(2\sqrt{7}\) is also an irrational number.
### Conclusion:
From the calculations above, the sum in option (d), \(\sqrt{7} + \sqrt{7}\), which gives \(2\sqrt{7}\), is the irrational number.
- Option (a): \(2.5 + 3 = 5.5\) (rational)
- Option (b): \(\sqrt{4} + 5 = 7\) (rational)
- Option (c): \(3\frac{1}{3} + 4\frac{1}{5} = \frac{113}{15} = 7.533333\ldots\) (rational)
- Option (d): \(\sqrt{7} + \sqrt{7} = 2\sqrt{7}\) (irrational)
Thus, Sum (d): [tex]\(\sqrt{7} + \sqrt{7}\)[/tex] is an irrational number.
### Sum (a): \(2.5 + 3\)
First, we add the numbers:
[tex]\[ 2.5 + 3 = 5.5 \][/tex]
The number 5.5 is a finite decimal, hence it is a rational number.
### Sum (b): \(\sqrt{4} + 5\)
First, we need to evaluate \(\sqrt{4}\):
[tex]\[ \sqrt{4} = 2 \][/tex]
So the sum is:
[tex]\[ 2 + 5 = 7 \][/tex]
The number 7 is an integer and, therefore, a rational number.
### Sum (c): \( \frac{10}{3} + \frac{21}{5} \)
First, we convert the mixed fractions to improper fractions:
[tex]\[ 3 \frac{1}{3} = \frac{10}{3} \][/tex]
[tex]\[ 4 \frac{1}{5} = \frac{21}{5} \][/tex]
We then add these fractions:
[tex]\[ \frac{10}{3} + \frac{21}{5} \][/tex]
To add these fractions, we need a common denominator:
[tex]\[ \frac{10}{3} = \frac{50}{15} \][/tex]
[tex]\[ \frac{21}{5} = \frac{63}{15} \][/tex]
So the sum is:
[tex]\[ \frac{50}{15} + \frac{63}{15} = \frac{113}{15} \][/tex]
Converting this back into decimal:
[tex]\[ \frac{113}{15} = 7.533333\ldots \][/tex]
The number 7.533333\ldots is a finite or repeating decimal, hence it is a rational number.
### Sum (d): \(\sqrt{7} + \sqrt{7}\)
Finally, we add:
[tex]\[ \sqrt{7} + \sqrt{7} = 2\sqrt{7} \][/tex]
Since \(\sqrt{7}\) is an irrational number (square roots of non-perfect squares are irrational), multiplying it by 2 does not change its irrationality. Therefore, \(2\sqrt{7}\) is also an irrational number.
### Conclusion:
From the calculations above, the sum in option (d), \(\sqrt{7} + \sqrt{7}\), which gives \(2\sqrt{7}\), is the irrational number.
- Option (a): \(2.5 + 3 = 5.5\) (rational)
- Option (b): \(\sqrt{4} + 5 = 7\) (rational)
- Option (c): \(3\frac{1}{3} + 4\frac{1}{5} = \frac{113}{15} = 7.533333\ldots\) (rational)
- Option (d): \(\sqrt{7} + \sqrt{7} = 2\sqrt{7}\) (irrational)
Thus, Sum (d): [tex]\(\sqrt{7} + \sqrt{7}\)[/tex] is an irrational number.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.