Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To divide \(x^3 - 6\) by \(x + 2\), we use polynomial division. Here is the step-by-step process:
1. Set up the division:
[tex]\[ \frac{x^3 + 0x^2 + 0x - 6}{x + 2} \][/tex]
This expression means we are dividing \(x^3 + 0x^2 + 0x - 6\) by \(x + 2\).
2. First term:
To find the first term of the quotient, divide the leading term of the dividend (\(x^3\)) by the leading term of the divisor (\(x\)):
[tex]\[ \frac{x^3}{x} = x^2 \][/tex]
Multiply \(x^2\) by the entire divisor (\(x + 2\)):
[tex]\[ x^2 \cdot (x + 2) = x^3 + 2x^2 \][/tex]
Subtract this product from the original dividend:
[tex]\[ (x^3 + 0x^2 + 0x - 6) - (x^3 + 2x^2) = -2x^2 + 0x - 6 \][/tex]
3. Second term:
Now, divide the leading term of the new polynomial (\(-2x^2\)) by the leading term of the divisor (\(x\)):
[tex]\[ \frac{-2x^2}{x} = -2x \][/tex]
Multiply \(-2x\) by \(x + 2\):
[tex]\[ -2x \cdot (x + 2) = -2x^2 - 4x \][/tex]
Subtract this product from the new polynomial:
[tex]\[ (-2x^2 + 0x - 6) - (-2x^2 - 4x) = 4x - 6 \][/tex]
4. Third term:
Next, divide the leading term of the new polynomial (\(4x\)) by the leading term of the divisor (\(x\)):
[tex]\[ \frac{4x}{x} = 4 \][/tex]
Multiply \(4\) by \(x + 2\):
[tex]\[ 4 \cdot (x + 2) = 4x + 8 \][/tex]
Subtract this product from the new polynomial:
[tex]\[ (4x - 6) - (4x + 8) = -14 \][/tex]
Thus, the quotient of the division is \(x^2 - 2x + 4\) and the remainder is \(-14\).
Putting everything together, we get:
[tex]\[ \frac{x^3 - 6}{x + 2} = x^2 - 2x + 4 + \frac{-14}{x + 2} \][/tex]
Simplifying the expression gives us:
[tex]\[ x^2 - 2x + 4 - \frac{14}{x + 2} \][/tex]
Therefore, the answer is:
[tex]\[ x^2 - 2x + 4 - \frac{14}{x + 2} \][/tex]
1. Set up the division:
[tex]\[ \frac{x^3 + 0x^2 + 0x - 6}{x + 2} \][/tex]
This expression means we are dividing \(x^3 + 0x^2 + 0x - 6\) by \(x + 2\).
2. First term:
To find the first term of the quotient, divide the leading term of the dividend (\(x^3\)) by the leading term of the divisor (\(x\)):
[tex]\[ \frac{x^3}{x} = x^2 \][/tex]
Multiply \(x^2\) by the entire divisor (\(x + 2\)):
[tex]\[ x^2 \cdot (x + 2) = x^3 + 2x^2 \][/tex]
Subtract this product from the original dividend:
[tex]\[ (x^3 + 0x^2 + 0x - 6) - (x^3 + 2x^2) = -2x^2 + 0x - 6 \][/tex]
3. Second term:
Now, divide the leading term of the new polynomial (\(-2x^2\)) by the leading term of the divisor (\(x\)):
[tex]\[ \frac{-2x^2}{x} = -2x \][/tex]
Multiply \(-2x\) by \(x + 2\):
[tex]\[ -2x \cdot (x + 2) = -2x^2 - 4x \][/tex]
Subtract this product from the new polynomial:
[tex]\[ (-2x^2 + 0x - 6) - (-2x^2 - 4x) = 4x - 6 \][/tex]
4. Third term:
Next, divide the leading term of the new polynomial (\(4x\)) by the leading term of the divisor (\(x\)):
[tex]\[ \frac{4x}{x} = 4 \][/tex]
Multiply \(4\) by \(x + 2\):
[tex]\[ 4 \cdot (x + 2) = 4x + 8 \][/tex]
Subtract this product from the new polynomial:
[tex]\[ (4x - 6) - (4x + 8) = -14 \][/tex]
Thus, the quotient of the division is \(x^2 - 2x + 4\) and the remainder is \(-14\).
Putting everything together, we get:
[tex]\[ \frac{x^3 - 6}{x + 2} = x^2 - 2x + 4 + \frac{-14}{x + 2} \][/tex]
Simplifying the expression gives us:
[tex]\[ x^2 - 2x + 4 - \frac{14}{x + 2} \][/tex]
Therefore, the answer is:
[tex]\[ x^2 - 2x + 4 - \frac{14}{x + 2} \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.