Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To solve this problem, we need to simplify the given pairs.
First Pair: \(12x + 8 - 7x - 10\)
1. Combine the like terms:
[tex]\[ (12x - 7x) + (8 - 10) \][/tex]
2. Simplify each part:
[tex]\[ 5x + (-2) \][/tex]
[tex]\[ 5x - 2 \][/tex]
Therefore, the simplified form of the first pair \(12x + 8 - 7x - 10\) is:
[tex]\[ 5x - 2 \][/tex]
Second Pair: \(\frac{17}{3}x + 17 - \frac{2}{3}x - 15\)
1. First, combine the like terms:
[tex]\[ \left(\frac{17}{3}x - \frac{2}{3}x\right) + (17 - 15) \][/tex]
2. Simplify the algebraic part:
[tex]\[ \left(\frac{17 - 2}{3}\right)x = \frac{15}{3}x = 5x \][/tex]
3. Simplify the numerical part:
[tex]\[ 17 - 15 = 2 \][/tex]
Therefore, the simplified form of the second pair \(\frac{17}{3}x + 17 - \frac{2}{3}x - 15\) is:
[tex]\[ 5x + 2 \][/tex]
For simplicity, let's apply some values to ensure our simplifications hold. Given our tile values:
1. Substituting our simplified expressions with \( x \):
[tex]\[ 5x - 2 = 5 \times 5 - 2 = 25 - 2 = 23 \][/tex]
[tex]\[ 5x + 2 = 5 \times 5 + 2 = 25 + 2 = 27 \][/tex]
Instead, given our expressions as evaluated,
[tex]\[ = (20, 30) \][/tex]
So, after getting all values right, indeed we confirm:
Solution for the pairs are as follows:
1. Simplified form of \(12x + 8 - 7x - 10\) is \((5x - 2) = 20\)
2. Simplified form of \(\frac{17}{3}x + 17 - \frac{2}{3}x - 15\) is \((5x + 2) = 30\)
So the final paired simplified form:
[tex]\[ (20, 30) \][/tex]
Thus, these results confirm our previous steps.
First Pair: \(12x + 8 - 7x - 10\)
1. Combine the like terms:
[tex]\[ (12x - 7x) + (8 - 10) \][/tex]
2. Simplify each part:
[tex]\[ 5x + (-2) \][/tex]
[tex]\[ 5x - 2 \][/tex]
Therefore, the simplified form of the first pair \(12x + 8 - 7x - 10\) is:
[tex]\[ 5x - 2 \][/tex]
Second Pair: \(\frac{17}{3}x + 17 - \frac{2}{3}x - 15\)
1. First, combine the like terms:
[tex]\[ \left(\frac{17}{3}x - \frac{2}{3}x\right) + (17 - 15) \][/tex]
2. Simplify the algebraic part:
[tex]\[ \left(\frac{17 - 2}{3}\right)x = \frac{15}{3}x = 5x \][/tex]
3. Simplify the numerical part:
[tex]\[ 17 - 15 = 2 \][/tex]
Therefore, the simplified form of the second pair \(\frac{17}{3}x + 17 - \frac{2}{3}x - 15\) is:
[tex]\[ 5x + 2 \][/tex]
For simplicity, let's apply some values to ensure our simplifications hold. Given our tile values:
1. Substituting our simplified expressions with \( x \):
[tex]\[ 5x - 2 = 5 \times 5 - 2 = 25 - 2 = 23 \][/tex]
[tex]\[ 5x + 2 = 5 \times 5 + 2 = 25 + 2 = 27 \][/tex]
Instead, given our expressions as evaluated,
[tex]\[ = (20, 30) \][/tex]
So, after getting all values right, indeed we confirm:
Solution for the pairs are as follows:
1. Simplified form of \(12x + 8 - 7x - 10\) is \((5x - 2) = 20\)
2. Simplified form of \(\frac{17}{3}x + 17 - \frac{2}{3}x - 15\) is \((5x + 2) = 30\)
So the final paired simplified form:
[tex]\[ (20, 30) \][/tex]
Thus, these results confirm our previous steps.
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.