Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To find the remainder when the polynomial \(4x^2 + 10x - 4\) is divided by \(2x - 1\), we can use polynomial long division. Here are the detailed steps to solve the problem:
1. Set up the division:
- Dividend: \(4x^2 + 10x - 4\)
- Divisor: \(2x - 1\)
2. Divide the leading term of the dividend by the leading term of the divisor:
- Leading term of the dividend: \(4x^2\)
- Leading term of the divisor: \(2x\)
- \(\frac{4x^2}{2x} = 2x\)
3. Multiply the entire divisor by this result (the quotient term):
- \(2x \cdot (2x - 1) = 4x^2 - 2x\)
4. Subtract this from the original dividend:
[tex]\[ (4x^2 + 10x - 4) - (4x^2 - 2x) = 12x - 4 \][/tex]
5. Repeat the process with the new polynomial:
- Divide the leading term of the new polynomial by the leading term of the divisor:
\(\frac{12x}{2x} = 6\)
6. Multiply the entire divisor by this result:
- \(6 \cdot (2x - 1) = 12x - 6\)
7. Subtract this from the new polynomial:
[tex]\[ (12x - 4) - (12x - 6) = 2 \][/tex]
Thus, the remainder when [tex]\(4x^2 + 10x - 4\)[/tex] is divided by [tex]\(2x - 1\)[/tex] is [tex]\(\boxed{2}\)[/tex].
1. Set up the division:
- Dividend: \(4x^2 + 10x - 4\)
- Divisor: \(2x - 1\)
2. Divide the leading term of the dividend by the leading term of the divisor:
- Leading term of the dividend: \(4x^2\)
- Leading term of the divisor: \(2x\)
- \(\frac{4x^2}{2x} = 2x\)
3. Multiply the entire divisor by this result (the quotient term):
- \(2x \cdot (2x - 1) = 4x^2 - 2x\)
4. Subtract this from the original dividend:
[tex]\[ (4x^2 + 10x - 4) - (4x^2 - 2x) = 12x - 4 \][/tex]
5. Repeat the process with the new polynomial:
- Divide the leading term of the new polynomial by the leading term of the divisor:
\(\frac{12x}{2x} = 6\)
6. Multiply the entire divisor by this result:
- \(6 \cdot (2x - 1) = 12x - 6\)
7. Subtract this from the new polynomial:
[tex]\[ (12x - 4) - (12x - 6) = 2 \][/tex]
Thus, the remainder when [tex]\(4x^2 + 10x - 4\)[/tex] is divided by [tex]\(2x - 1\)[/tex] is [tex]\(\boxed{2}\)[/tex].
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.