Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To solve the problem of determining the length of the other leg of a right triangle when one leg and the hypotenuse are given, we will use the Pythagorean theorem. The Pythagorean theorem states that in a right triangle, the sum of the squares of the lengths of the two legs is equal to the square of the length of the hypotenuse. Mathematically, this is expressed as:
[tex]\[ a^2 + b^2 = c^2 \][/tex]
where \( a \) and \( b \) are the lengths of the legs, and \( c \) is the length of the hypotenuse.
Given:
- One leg \( a = \sqrt{7} \)
- Hypotenuse \( c = 4 \)
We need to find the length of the other leg \( b \).
1. First, we square the lengths of the leg and the hypotenuse:
[tex]\[ a^2 = (\sqrt{7})^2 = 7 \][/tex]
[tex]\[ c^2 = 4^2 = 16 \][/tex]
2. Next, we use the Pythagorean theorem to set up the equation and solve for \( b^2 \):
[tex]\[ a^2 + b^2 = c^2 \][/tex]
[tex]\[ 7 + b^2 = 16 \][/tex]
3. Subtract \( 7 \) from both sides to solve for \( b^2 \):
[tex]\[ b^2 = 16 - 7 \][/tex]
[tex]\[ b^2 = 9 \][/tex]
4. Finally, take the square root of both sides to find \( b \):
[tex]\[ b = \sqrt{9} = 3 \][/tex]
Therefore, the length of the other leg of the right triangle is \( 3 \). The correct answer is:
[tex]\[ 3 \][/tex]
[tex]\[ a^2 + b^2 = c^2 \][/tex]
where \( a \) and \( b \) are the lengths of the legs, and \( c \) is the length of the hypotenuse.
Given:
- One leg \( a = \sqrt{7} \)
- Hypotenuse \( c = 4 \)
We need to find the length of the other leg \( b \).
1. First, we square the lengths of the leg and the hypotenuse:
[tex]\[ a^2 = (\sqrt{7})^2 = 7 \][/tex]
[tex]\[ c^2 = 4^2 = 16 \][/tex]
2. Next, we use the Pythagorean theorem to set up the equation and solve for \( b^2 \):
[tex]\[ a^2 + b^2 = c^2 \][/tex]
[tex]\[ 7 + b^2 = 16 \][/tex]
3. Subtract \( 7 \) from both sides to solve for \( b^2 \):
[tex]\[ b^2 = 16 - 7 \][/tex]
[tex]\[ b^2 = 9 \][/tex]
4. Finally, take the square root of both sides to find \( b \):
[tex]\[ b = \sqrt{9} = 3 \][/tex]
Therefore, the length of the other leg of the right triangle is \( 3 \). The correct answer is:
[tex]\[ 3 \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.