Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To express \(\sqrt{112}\) in simplest radical form, follow these steps:
1. Find the prime factorization of 112:
- Start by dividing by the smallest prime number, which is 2:
[tex]\[ 112 \div 2 = 56 \][/tex]
- Continue dividing 56 by 2:
[tex]\[ 56 \div 2 = 28 \][/tex]
- Continue dividing 28 by 2:
[tex]\[ 28 \div 2 = 14 \][/tex]
- Continue dividing 14 by 2:
[tex]\[ 14 \div 2 = 7 \][/tex]
- Finally, 7 is a prime number.
Therefore, the prime factorization of 112 is:
[tex]\[ 112 = 2^4 \times 7 \][/tex]
2. Express the square root of 112 using its prime factors:
[tex]\[ \sqrt{112} = \sqrt{2^4 \times 7} \][/tex]
3. Simplify the square root by taking the square root of the factors:
- The square root of \(2^4\) is \(2^2\), since \((2^2)^2 = 2^4\).
- The square root of 7 remains \(\sqrt{7}\), as 7 is a prime number and cannot be simplified further.
Expressing this simplification:
[tex]\[ \sqrt{112} = \sqrt{2^4 \times 7} = \sqrt{(2^2)^2 \times 7} = 2^2 \times \sqrt{7} \][/tex]
4. Calculate the final simplified form:
[tex]\[ 2^2 = 4 \][/tex]
Therefore:
[tex]\[ \sqrt{112} = 4 \sqrt{7} \][/tex]
Thus, the simplest radical form of \(\sqrt{112}\) is:
[tex]\[ \boxed{4 \sqrt{7}} \][/tex]
1. Find the prime factorization of 112:
- Start by dividing by the smallest prime number, which is 2:
[tex]\[ 112 \div 2 = 56 \][/tex]
- Continue dividing 56 by 2:
[tex]\[ 56 \div 2 = 28 \][/tex]
- Continue dividing 28 by 2:
[tex]\[ 28 \div 2 = 14 \][/tex]
- Continue dividing 14 by 2:
[tex]\[ 14 \div 2 = 7 \][/tex]
- Finally, 7 is a prime number.
Therefore, the prime factorization of 112 is:
[tex]\[ 112 = 2^4 \times 7 \][/tex]
2. Express the square root of 112 using its prime factors:
[tex]\[ \sqrt{112} = \sqrt{2^4 \times 7} \][/tex]
3. Simplify the square root by taking the square root of the factors:
- The square root of \(2^4\) is \(2^2\), since \((2^2)^2 = 2^4\).
- The square root of 7 remains \(\sqrt{7}\), as 7 is a prime number and cannot be simplified further.
Expressing this simplification:
[tex]\[ \sqrt{112} = \sqrt{2^4 \times 7} = \sqrt{(2^2)^2 \times 7} = 2^2 \times \sqrt{7} \][/tex]
4. Calculate the final simplified form:
[tex]\[ 2^2 = 4 \][/tex]
Therefore:
[tex]\[ \sqrt{112} = 4 \sqrt{7} \][/tex]
Thus, the simplest radical form of \(\sqrt{112}\) is:
[tex]\[ \boxed{4 \sqrt{7}} \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.