Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To solve the problem \( \sqrt[5]{4 x^2} \cdot \sqrt[5]{4 x^2} \), we will follow these steps:
1. Rewrite the expressions using exponent notation:
The fifth root of a number \(a\) can be written as \(a^{1/5}\). So,
[tex]\[ \sqrt[5]{4 x^2} = (4 x^2)^{1/5} \][/tex]
2. Multiply the expressions:
According to the rules of exponents, when you multiply two expressions with the same base, you add the exponents. Therefore,
[tex]\[ \sqrt[5]{4 x^2} \cdot \sqrt[5]{4 x^2} = (4 x^2)^{1/5} \cdot (4 x^2)^{1/5} = (4 x^2)^{1/5 + 1/5} = (4 x^2)^{2/5} \][/tex]
3. Simplify the exponent:
The exponent \(2/5\) indicates a power of 2 and a root of 5. We do not have to change this further. So our simplified expression remains:
[tex]\[ (4 x^2)^{2/5} \][/tex]
Given the multiple choices, it becomes clear that:
- \(4 x^2\) is not simplifying correctly the power roots.
- \(\sqrt[5]{16 x^4}\) simplifies accurately but doesn't match context wise.
- \(2\left(\sqrt[5]{4 x^2}\right)\) doubles up and falls.
- \(16 x^4\) is an over syntactical amplification.
The correct choice is:
[tex]\[ \boxed{(4 x^2)^{2/5}} \][/tex]
1. Rewrite the expressions using exponent notation:
The fifth root of a number \(a\) can be written as \(a^{1/5}\). So,
[tex]\[ \sqrt[5]{4 x^2} = (4 x^2)^{1/5} \][/tex]
2. Multiply the expressions:
According to the rules of exponents, when you multiply two expressions with the same base, you add the exponents. Therefore,
[tex]\[ \sqrt[5]{4 x^2} \cdot \sqrt[5]{4 x^2} = (4 x^2)^{1/5} \cdot (4 x^2)^{1/5} = (4 x^2)^{1/5 + 1/5} = (4 x^2)^{2/5} \][/tex]
3. Simplify the exponent:
The exponent \(2/5\) indicates a power of 2 and a root of 5. We do not have to change this further. So our simplified expression remains:
[tex]\[ (4 x^2)^{2/5} \][/tex]
Given the multiple choices, it becomes clear that:
- \(4 x^2\) is not simplifying correctly the power roots.
- \(\sqrt[5]{16 x^4}\) simplifies accurately but doesn't match context wise.
- \(2\left(\sqrt[5]{4 x^2}\right)\) doubles up and falls.
- \(16 x^4\) is an over syntactical amplification.
The correct choice is:
[tex]\[ \boxed{(4 x^2)^{2/5}} \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.