At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine the relationship between the given x and y values and to predict the missing y value for \(x = 5\), we start by assuming that y follows a linear relationship with x. This can be represented by the equation of a line:
[tex]\[ y = mx + c \][/tex]
where \(m\) is the slope of the line and \(c\) is the y-intercept.
### Step-by-Step Solution:
1. Identify the given values:
We have the following data points:
[tex]\[ \begin{array}{|c|c|c|c|c|c|} \hline x & 1 & 2 & 3 & 4 & 5 \\ \hline y & 13 & 21 & 29 & 37 & ? \\ \hline \end{array} \][/tex]
2. Formulate the system of equations:
From the given points (1, 13), (2, 21), (3, 29), and (4, 37), we set up the following system of equations based on the line equation \( y = mx + c \):
[tex]\[ \begin{cases} 13 = m \cdot 1 + c \\ 21 = m \cdot 2 + c \\ 29 = m \cdot 3 + c \\ 37 = m \cdot 4 + c \end{cases} \][/tex]
3. Find the slope (m) and y-intercept (c):
By solving these equations, we get the following results for the coefficients:
[tex]\[ m = 8, \quad c = 5 \][/tex]
Substituting these values back into the line equation, we get:
[tex]\[ y = 8x + 5 \][/tex]
4. Predict the missing y value for \(x = 5\):
We now use the derived equation of the line to predict the y value when \(x = 5\):
[tex]\[ y = 8 \cdot 5 + 5 \][/tex]
[tex]\[ y = 40 + 5 \][/tex]
[tex]\[ y = 45 \][/tex]
### Final Answer:
The coefficients of the line are:
[tex]\[ m = 8, \quad c = 5 \][/tex]
The predicted y value for \(x = 5\) is:
[tex]\[ y = 45 \][/tex]
Thus, the completed table is:
[tex]\[ \begin{array}{|c|c|c|c|c|c|} \hline x & 1 & 2 & 3 & 4 & 5 \\ \hline y & 13 & 21 & 29 & 37 & 45 \\ \hline \end{array} \][/tex]
[tex]\[ y = mx + c \][/tex]
where \(m\) is the slope of the line and \(c\) is the y-intercept.
### Step-by-Step Solution:
1. Identify the given values:
We have the following data points:
[tex]\[ \begin{array}{|c|c|c|c|c|c|} \hline x & 1 & 2 & 3 & 4 & 5 \\ \hline y & 13 & 21 & 29 & 37 & ? \\ \hline \end{array} \][/tex]
2. Formulate the system of equations:
From the given points (1, 13), (2, 21), (3, 29), and (4, 37), we set up the following system of equations based on the line equation \( y = mx + c \):
[tex]\[ \begin{cases} 13 = m \cdot 1 + c \\ 21 = m \cdot 2 + c \\ 29 = m \cdot 3 + c \\ 37 = m \cdot 4 + c \end{cases} \][/tex]
3. Find the slope (m) and y-intercept (c):
By solving these equations, we get the following results for the coefficients:
[tex]\[ m = 8, \quad c = 5 \][/tex]
Substituting these values back into the line equation, we get:
[tex]\[ y = 8x + 5 \][/tex]
4. Predict the missing y value for \(x = 5\):
We now use the derived equation of the line to predict the y value when \(x = 5\):
[tex]\[ y = 8 \cdot 5 + 5 \][/tex]
[tex]\[ y = 40 + 5 \][/tex]
[tex]\[ y = 45 \][/tex]
### Final Answer:
The coefficients of the line are:
[tex]\[ m = 8, \quad c = 5 \][/tex]
The predicted y value for \(x = 5\) is:
[tex]\[ y = 45 \][/tex]
Thus, the completed table is:
[tex]\[ \begin{array}{|c|c|c|c|c|c|} \hline x & 1 & 2 & 3 & 4 & 5 \\ \hline y & 13 & 21 & 29 & 37 & 45 \\ \hline \end{array} \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.