Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To find the linear equation of a line that passes through the points \((-1, 7)\) and \( (2, 4) \) using the point-slope form method, follow these steps:
1. Calculate the slope \( m \) of the line:
The slope \( m \) is given by:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Substituting the given points \((x_1, y_1) = (-1, 7)\) and \((x_2, y_2) = (2, 4)\):
[tex]\[ m = \frac{4 - 7}{2 - (-1)} = \frac{-3}{3} = -1 \][/tex]
2. Use the point-slope form of the equation of a line:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
Using the slope \( m = -1 \) and one of the given points \((-1, 7)\):
[tex]\[ y - 7 = -1(x - (-1)) \quad \text{or} \quad y - 7 = -1(x + 1) \][/tex]
Or using the other point \((2, 4)\):
[tex]\[ y - 4 = -1(x - 2) \][/tex]
3. Convert the equation to slope-intercept form \( y = mx + b \) (optional):
Expanding \( y - 7 = -1(x + 1) \):
[tex]\[ y - 7 = -x - 1 \quad \Rightarrow \quad y = -x - 1 + 7 \quad \Rightarrow \quad y = -x + 6 \][/tex]
Or expanding \( y - 4 = -1(x - 2) \):
[tex]\[ y - 4 = -x + 2 \quad \Rightarrow \quad y = -x + 2 + 4 \quad \Rightarrow \quad y = -x + 6 \][/tex]
Let's examine which statements provided are correct steps in this process:
1. \( y = x + 6 \) — Incorrect: The correct equation in slope-intercept form is \( y = -x + 6 \).
2. \( 7 = -1(-1) + b \) — Correct: This is part of solving for the y-intercept \( b \) using the point \((-1, 7)\).
3. \( y - 4 = -1(x - 2) \) — Correct: This is the point-slope form using the point \((2, 4)\).
4. \( y - 7 = -1(x - (-1)) \) — Correct: This is the point-slope form using the point \((-1, 7)\).
5. \( y - 2 = x - 4 \) — Incorrect: This is not the correct form as it suggests a different slope.
6. \( y = -x + 6 \) — Correct: This is the correct slope-intercept form of the equation.
So, the correct statements are:
- \( 7 = -1(-1) + b \)
- \( y - 4 = -1(x - 2) \)
- \( y - 7 = -1(x - (-1)) \)
- [tex]\( y = -x + 6 \)[/tex]
1. Calculate the slope \( m \) of the line:
The slope \( m \) is given by:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Substituting the given points \((x_1, y_1) = (-1, 7)\) and \((x_2, y_2) = (2, 4)\):
[tex]\[ m = \frac{4 - 7}{2 - (-1)} = \frac{-3}{3} = -1 \][/tex]
2. Use the point-slope form of the equation of a line:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
Using the slope \( m = -1 \) and one of the given points \((-1, 7)\):
[tex]\[ y - 7 = -1(x - (-1)) \quad \text{or} \quad y - 7 = -1(x + 1) \][/tex]
Or using the other point \((2, 4)\):
[tex]\[ y - 4 = -1(x - 2) \][/tex]
3. Convert the equation to slope-intercept form \( y = mx + b \) (optional):
Expanding \( y - 7 = -1(x + 1) \):
[tex]\[ y - 7 = -x - 1 \quad \Rightarrow \quad y = -x - 1 + 7 \quad \Rightarrow \quad y = -x + 6 \][/tex]
Or expanding \( y - 4 = -1(x - 2) \):
[tex]\[ y - 4 = -x + 2 \quad \Rightarrow \quad y = -x + 2 + 4 \quad \Rightarrow \quad y = -x + 6 \][/tex]
Let's examine which statements provided are correct steps in this process:
1. \( y = x + 6 \) — Incorrect: The correct equation in slope-intercept form is \( y = -x + 6 \).
2. \( 7 = -1(-1) + b \) — Correct: This is part of solving for the y-intercept \( b \) using the point \((-1, 7)\).
3. \( y - 4 = -1(x - 2) \) — Correct: This is the point-slope form using the point \((2, 4)\).
4. \( y - 7 = -1(x - (-1)) \) — Correct: This is the point-slope form using the point \((-1, 7)\).
5. \( y - 2 = x - 4 \) — Incorrect: This is not the correct form as it suggests a different slope.
6. \( y = -x + 6 \) — Correct: This is the correct slope-intercept form of the equation.
So, the correct statements are:
- \( 7 = -1(-1) + b \)
- \( y - 4 = -1(x - 2) \)
- \( y - 7 = -1(x - (-1)) \)
- [tex]\( y = -x + 6 \)[/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.