At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To find the linear equation of a line that passes through the points \((-1, 7)\) and \( (2, 4) \) using the point-slope form method, follow these steps:
1. Calculate the slope \( m \) of the line:
The slope \( m \) is given by:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Substituting the given points \((x_1, y_1) = (-1, 7)\) and \((x_2, y_2) = (2, 4)\):
[tex]\[ m = \frac{4 - 7}{2 - (-1)} = \frac{-3}{3} = -1 \][/tex]
2. Use the point-slope form of the equation of a line:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
Using the slope \( m = -1 \) and one of the given points \((-1, 7)\):
[tex]\[ y - 7 = -1(x - (-1)) \quad \text{or} \quad y - 7 = -1(x + 1) \][/tex]
Or using the other point \((2, 4)\):
[tex]\[ y - 4 = -1(x - 2) \][/tex]
3. Convert the equation to slope-intercept form \( y = mx + b \) (optional):
Expanding \( y - 7 = -1(x + 1) \):
[tex]\[ y - 7 = -x - 1 \quad \Rightarrow \quad y = -x - 1 + 7 \quad \Rightarrow \quad y = -x + 6 \][/tex]
Or expanding \( y - 4 = -1(x - 2) \):
[tex]\[ y - 4 = -x + 2 \quad \Rightarrow \quad y = -x + 2 + 4 \quad \Rightarrow \quad y = -x + 6 \][/tex]
Let's examine which statements provided are correct steps in this process:
1. \( y = x + 6 \) — Incorrect: The correct equation in slope-intercept form is \( y = -x + 6 \).
2. \( 7 = -1(-1) + b \) — Correct: This is part of solving for the y-intercept \( b \) using the point \((-1, 7)\).
3. \( y - 4 = -1(x - 2) \) — Correct: This is the point-slope form using the point \((2, 4)\).
4. \( y - 7 = -1(x - (-1)) \) — Correct: This is the point-slope form using the point \((-1, 7)\).
5. \( y - 2 = x - 4 \) — Incorrect: This is not the correct form as it suggests a different slope.
6. \( y = -x + 6 \) — Correct: This is the correct slope-intercept form of the equation.
So, the correct statements are:
- \( 7 = -1(-1) + b \)
- \( y - 4 = -1(x - 2) \)
- \( y - 7 = -1(x - (-1)) \)
- [tex]\( y = -x + 6 \)[/tex]
1. Calculate the slope \( m \) of the line:
The slope \( m \) is given by:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Substituting the given points \((x_1, y_1) = (-1, 7)\) and \((x_2, y_2) = (2, 4)\):
[tex]\[ m = \frac{4 - 7}{2 - (-1)} = \frac{-3}{3} = -1 \][/tex]
2. Use the point-slope form of the equation of a line:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
Using the slope \( m = -1 \) and one of the given points \((-1, 7)\):
[tex]\[ y - 7 = -1(x - (-1)) \quad \text{or} \quad y - 7 = -1(x + 1) \][/tex]
Or using the other point \((2, 4)\):
[tex]\[ y - 4 = -1(x - 2) \][/tex]
3. Convert the equation to slope-intercept form \( y = mx + b \) (optional):
Expanding \( y - 7 = -1(x + 1) \):
[tex]\[ y - 7 = -x - 1 \quad \Rightarrow \quad y = -x - 1 + 7 \quad \Rightarrow \quad y = -x + 6 \][/tex]
Or expanding \( y - 4 = -1(x - 2) \):
[tex]\[ y - 4 = -x + 2 \quad \Rightarrow \quad y = -x + 2 + 4 \quad \Rightarrow \quad y = -x + 6 \][/tex]
Let's examine which statements provided are correct steps in this process:
1. \( y = x + 6 \) — Incorrect: The correct equation in slope-intercept form is \( y = -x + 6 \).
2. \( 7 = -1(-1) + b \) — Correct: This is part of solving for the y-intercept \( b \) using the point \((-1, 7)\).
3. \( y - 4 = -1(x - 2) \) — Correct: This is the point-slope form using the point \((2, 4)\).
4. \( y - 7 = -1(x - (-1)) \) — Correct: This is the point-slope form using the point \((-1, 7)\).
5. \( y - 2 = x - 4 \) — Incorrect: This is not the correct form as it suggests a different slope.
6. \( y = -x + 6 \) — Correct: This is the correct slope-intercept form of the equation.
So, the correct statements are:
- \( 7 = -1(-1) + b \)
- \( y - 4 = -1(x - 2) \)
- \( y - 7 = -1(x - (-1)) \)
- [tex]\( y = -x + 6 \)[/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.