Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To solve for the other root of the quadratic equation \( x^2 - 6x + 8 = 0 \), we can start by using the information given that one of the solutions is \( x = 2 \).
### Step-by-Step Solution:
1. Identify the given root: We are given that \( x = 2 \) is one of the solutions.
2. Factorize the quadratic equation: Knowing one solution helps us factorize the quadratic equation. The quadratic equation can be expressed as:
[tex]\[ x^2 - 6x + 8 = (x - 2)(x - b) = 0 \][/tex]
Here, \( x = 2 \) is one factor, so one part of our factorized form is \( (x - 2) \).
3. Find the second factor: Next, we need to determine the other factor. Since we have \( x^2 - 6x + 8 \), which can be rewritten as:
[tex]\[ x^2 - 6x + 8 = (x - 2)(x - b) \][/tex]
where \( b \) is the other root.
4. Expanding and comparing coefficients:
[tex]\[ (x - 2)(x - b) = x^2 - (2 + b)x + 2b \][/tex]
By comparing this with the original equation \( x^2 - 6x + 8 \), we get:
[tex]\[ 2 + b = 6 \quad \text{and} \quad 2b = 8 \][/tex]
5. Solving these equations:
- For the first equation: \( 2 + b = 6 \)
[tex]\[ b = 6 - 2 \][/tex]
[tex]\[ b = 4 \][/tex]
- For the second equation: \( 2b = 8 \)
[tex]\[ b = \frac{8}{2} \][/tex]
[tex]\[ b = 4 \][/tex]
Both methods agree that \( b = 4 \).
Therefore, the other solution to the equation \( x^2 - 6x + 8 = 0 \) is \( x = 4 \).
Thus, the correct answer is:
[tex]\[ \boxed{4} \][/tex]
### Step-by-Step Solution:
1. Identify the given root: We are given that \( x = 2 \) is one of the solutions.
2. Factorize the quadratic equation: Knowing one solution helps us factorize the quadratic equation. The quadratic equation can be expressed as:
[tex]\[ x^2 - 6x + 8 = (x - 2)(x - b) = 0 \][/tex]
Here, \( x = 2 \) is one factor, so one part of our factorized form is \( (x - 2) \).
3. Find the second factor: Next, we need to determine the other factor. Since we have \( x^2 - 6x + 8 \), which can be rewritten as:
[tex]\[ x^2 - 6x + 8 = (x - 2)(x - b) \][/tex]
where \( b \) is the other root.
4. Expanding and comparing coefficients:
[tex]\[ (x - 2)(x - b) = x^2 - (2 + b)x + 2b \][/tex]
By comparing this with the original equation \( x^2 - 6x + 8 \), we get:
[tex]\[ 2 + b = 6 \quad \text{and} \quad 2b = 8 \][/tex]
5. Solving these equations:
- For the first equation: \( 2 + b = 6 \)
[tex]\[ b = 6 - 2 \][/tex]
[tex]\[ b = 4 \][/tex]
- For the second equation: \( 2b = 8 \)
[tex]\[ b = \frac{8}{2} \][/tex]
[tex]\[ b = 4 \][/tex]
Both methods agree that \( b = 4 \).
Therefore, the other solution to the equation \( x^2 - 6x + 8 = 0 \) is \( x = 4 \).
Thus, the correct answer is:
[tex]\[ \boxed{4} \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.