At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Sure! Let's evaluate the limit as \( x \) approaches 0 for the expression \(\frac{3x \sin(4x)}{e^{x^2} - \cos(2x)}\). Here is a step-by-step explanation:
1. Identify the function:
We need to find the limit of the function \( \frac{3x \sin(4x)}{e^{x^2} - \cos(2x)} \) as \( x \) approaches 0.
2. Substitute \( x \) with 0 and analyze:
Substitute \( x = 0 \) directly to see if it yields the indeterminate form \(\frac{0}{0}\):
- Numerator: \( 3 \cdot 0 \cdot \sin(4 \cdot 0) = 0 \)
- Denominator: \( e^{0^2} - \cos(2 \cdot 0) = 1 - 1 = 0 \)
Since both the numerator and the denominator evaluate to 0, we indeed have an indeterminate form \(\frac{0}{0}\).
3. Apply L'Hôpital's Rule:
Given that the limit is in the indeterminate form, we can apply L'Hôpital's Rule, which states that:
[tex]\[ \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)} \][/tex]
if \( \lim_{x \to c} \frac{f(x)}{g(x)} \) is in the indeterminate form.
4. Compute the derivatives of the numerator and the denominator:
First, find the derivative of the numerator \( 3x \sin(4x) \):
[tex]\[ \frac{d}{dx} \left(3x \sin(4x)\right) = 3 \left(\sin(4x) + 4x \cos(4x)\right) = 3 \sin(4x) + 12x \cos(4x) \][/tex]
Next, find the derivative of the denominator \( e^{x^2} - \cos(2x) \):
[tex]\[ \frac{d}{dx} \left( e^{x^2} - \cos(2x) \right) = 2x e^{x^2} + 2\sin(2x) \][/tex]
5. Form the new limit with derivatives:
By applying L'Hôpital's Rule, the limit becomes:
[tex]\[ \lim_{x \to 0} \frac{3 \sin(4x) + 12x \cos(4x)}{2x e^{x^2} + 2 \sin(2x)} \][/tex]
6. Substitute \( x = 0 \) in the new limit:
Evaluate the new expression by substituting \( x = 0 \):
- Numerator: \( 3 \sin(4 \cdot 0) + 12 \cdot 0 \cdot \cos(4 \cdot 0) = 3 \cdot 0 + 12 \cdot 0 = 0 \)
- Denominator: \( 2 \cdot 0 \cdot e^{0^2} + 2 \cdot \sin(2 \cdot 0) = 0 + 2 \cdot 0 = 0 \)
The new fraction still evaluates to \( \frac{0}{0} \), so L'Hôpital's Rule needs to be applied again.
7. Apply L’Hôpital’s Rule again:
Differentiate the numerator and denominator again:
- Second derivative of the numerator \( 3 \sin(4x) + 12x \cos(4x) \):
[tex]\[ \frac{d}{dx}(3 \sin(4x) + 12x \cos(4x)) = 12 \cos(4x) - 48x \sin(4x) + 12 \cos(4x) = 24 \cos(4x) - 48x \sin(4x) \][/tex]
- Second derivative of the denominator \( 2x e^{x^2} + 2 \sin(2x) \):
[tex]\[ \frac{d}{dx}(2x e^{x^2} + 2 \sin(2x)) = 2e^{x^2} + 4x^2 e^{x^2} + 4 \cos(2x) \][/tex]
8. Form the new limit with second derivatives:
The limit becomes:
[tex]\[ \lim_{x \to 0} \frac{24 \cos(4x) - 48x \sin(4x)}{2 e^{x^2} + 4x^2 e^{x^2} + 4 \cos(2x)} \][/tex]
9. Substitute \( x = 0 \) in the new limit:
Evaluate the limit by directly substituting \( x = 0 \):
- Numerator: \( 24 \cos(4 \cdot 0) - 48 \cdot 0 \cdot \sin(4 \cdot 0) = 24 \)
- Denominator: \( 2 e^{0^2} + 4 \cdot 0^2 \cdot e^{0^2} + 4 \cos(2 \cdot 0) = 2 + 0 + 4 = 6 \)
10. Calculate the final limit:
[tex]\[ \lim_{x \to 0} \frac{24}{6} = 4 \][/tex]
Therefore, the limit is [tex]\(\boxed{4}\)[/tex].
1. Identify the function:
We need to find the limit of the function \( \frac{3x \sin(4x)}{e^{x^2} - \cos(2x)} \) as \( x \) approaches 0.
2. Substitute \( x \) with 0 and analyze:
Substitute \( x = 0 \) directly to see if it yields the indeterminate form \(\frac{0}{0}\):
- Numerator: \( 3 \cdot 0 \cdot \sin(4 \cdot 0) = 0 \)
- Denominator: \( e^{0^2} - \cos(2 \cdot 0) = 1 - 1 = 0 \)
Since both the numerator and the denominator evaluate to 0, we indeed have an indeterminate form \(\frac{0}{0}\).
3. Apply L'Hôpital's Rule:
Given that the limit is in the indeterminate form, we can apply L'Hôpital's Rule, which states that:
[tex]\[ \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)} \][/tex]
if \( \lim_{x \to c} \frac{f(x)}{g(x)} \) is in the indeterminate form.
4. Compute the derivatives of the numerator and the denominator:
First, find the derivative of the numerator \( 3x \sin(4x) \):
[tex]\[ \frac{d}{dx} \left(3x \sin(4x)\right) = 3 \left(\sin(4x) + 4x \cos(4x)\right) = 3 \sin(4x) + 12x \cos(4x) \][/tex]
Next, find the derivative of the denominator \( e^{x^2} - \cos(2x) \):
[tex]\[ \frac{d}{dx} \left( e^{x^2} - \cos(2x) \right) = 2x e^{x^2} + 2\sin(2x) \][/tex]
5. Form the new limit with derivatives:
By applying L'Hôpital's Rule, the limit becomes:
[tex]\[ \lim_{x \to 0} \frac{3 \sin(4x) + 12x \cos(4x)}{2x e^{x^2} + 2 \sin(2x)} \][/tex]
6. Substitute \( x = 0 \) in the new limit:
Evaluate the new expression by substituting \( x = 0 \):
- Numerator: \( 3 \sin(4 \cdot 0) + 12 \cdot 0 \cdot \cos(4 \cdot 0) = 3 \cdot 0 + 12 \cdot 0 = 0 \)
- Denominator: \( 2 \cdot 0 \cdot e^{0^2} + 2 \cdot \sin(2 \cdot 0) = 0 + 2 \cdot 0 = 0 \)
The new fraction still evaluates to \( \frac{0}{0} \), so L'Hôpital's Rule needs to be applied again.
7. Apply L’Hôpital’s Rule again:
Differentiate the numerator and denominator again:
- Second derivative of the numerator \( 3 \sin(4x) + 12x \cos(4x) \):
[tex]\[ \frac{d}{dx}(3 \sin(4x) + 12x \cos(4x)) = 12 \cos(4x) - 48x \sin(4x) + 12 \cos(4x) = 24 \cos(4x) - 48x \sin(4x) \][/tex]
- Second derivative of the denominator \( 2x e^{x^2} + 2 \sin(2x) \):
[tex]\[ \frac{d}{dx}(2x e^{x^2} + 2 \sin(2x)) = 2e^{x^2} + 4x^2 e^{x^2} + 4 \cos(2x) \][/tex]
8. Form the new limit with second derivatives:
The limit becomes:
[tex]\[ \lim_{x \to 0} \frac{24 \cos(4x) - 48x \sin(4x)}{2 e^{x^2} + 4x^2 e^{x^2} + 4 \cos(2x)} \][/tex]
9. Substitute \( x = 0 \) in the new limit:
Evaluate the limit by directly substituting \( x = 0 \):
- Numerator: \( 24 \cos(4 \cdot 0) - 48 \cdot 0 \cdot \sin(4 \cdot 0) = 24 \)
- Denominator: \( 2 e^{0^2} + 4 \cdot 0^2 \cdot e^{0^2} + 4 \cos(2 \cdot 0) = 2 + 0 + 4 = 6 \)
10. Calculate the final limit:
[tex]\[ \lim_{x \to 0} \frac{24}{6} = 4 \][/tex]
Therefore, the limit is [tex]\(\boxed{4}\)[/tex].
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.