Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To write the equation \(\frac{2}{3} a + 5 a^3 + 4 a^4 - 2 a^5\) in standard form, we need to arrange the terms in descending order of their powers.
Here's the given expression:
[tex]\[ \frac{2}{3} a + 5 a^3 + 4 a^4 - 2 a^5 \][/tex]
Now let's list the terms in order of descending powers of \(a\):
- The highest power of \(a\) is \(a^5\) with coefficient \(-2\), so we start with \(-2 a^5\).
- Next is \(a^4\) with coefficient \(4\), which gives us \(4 a^4\).
- Following that, we have \(a^3\) with coefficient \(5\), resulting in \(5 a^3\).
- Finally, we have \(a\) with the fractional coefficient \(\frac{2}{3}\), which remains as \(\frac{2}{3} a\).
Combining these, the standard form of the equation is:
[tex]\[ -2 a^5 + 4 a^4 + 5 a^3 + \frac{2}{3} a \][/tex]
Therefore, the correct option is:
A. \(-2 a^5 + 4 a^4 + 5 a^3 + \frac{2}{3} a\)
This matches option A, so the correct answer is [tex]\( \boxed{A} \)[/tex].
Here's the given expression:
[tex]\[ \frac{2}{3} a + 5 a^3 + 4 a^4 - 2 a^5 \][/tex]
Now let's list the terms in order of descending powers of \(a\):
- The highest power of \(a\) is \(a^5\) with coefficient \(-2\), so we start with \(-2 a^5\).
- Next is \(a^4\) with coefficient \(4\), which gives us \(4 a^4\).
- Following that, we have \(a^3\) with coefficient \(5\), resulting in \(5 a^3\).
- Finally, we have \(a\) with the fractional coefficient \(\frac{2}{3}\), which remains as \(\frac{2}{3} a\).
Combining these, the standard form of the equation is:
[tex]\[ -2 a^5 + 4 a^4 + 5 a^3 + \frac{2}{3} a \][/tex]
Therefore, the correct option is:
A. \(-2 a^5 + 4 a^4 + 5 a^3 + \frac{2}{3} a\)
This matches option A, so the correct answer is [tex]\( \boxed{A} \)[/tex].
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.