At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine which dimensions could be that of a right square prism with a volume of 360 cubic units, we need to check if the product of length, width, and height for each given option equals 360.
### Option 1: 3 by 3 by 40
1. Calculate the volume:
[tex]\[ V = \text{length} \times \text{width} \times \text{height} = 3 \times 3 \times 40 \][/tex]
2. Perform the multiplication:
[tex]\[ 3 \times 3 = 9 \quad \text{and then} \quad 9 \times 40 = 360 \][/tex]
3. The volume is 360 cubic units, which matches the required volume.
So, \(3 \times 3 \times 40\) is a valid option.
### Option 2: 4 by 4 by 20
1. Calculate the volume:
[tex]\[ V = 4 \times 4 \times 20 \][/tex]
2. Perform the multiplication:
[tex]\[ 4 \times 4 = 16 \quad \text{and then} \quad 16 \times 20 = 320 \][/tex]
3. The volume is 320 cubic units, which does not match the required volume.
So, \(4 \times 4 \times 20\) is not a valid option.
### Option 3: 5 by 5 by 14
1. Calculate the volume:
[tex]\[ V = 5 \times 5 \times 14 \][/tex]
2. Perform the multiplication:
[tex]\[ 5 \times 5 = 25 \quad \text{and then} \quad 25 \times 14 = 350 \][/tex]
3. The volume is 350 cubic units, which does not match the required volume.
So, \(5 \times 5 \times 14\) is not a valid option.
### Option 4: 2.5 by 12 by 12
1. Calculate the volume:
[tex]\[ V = 2.5 \times 12 \times 12 \][/tex]
2. Perform the multiplication:
[tex]\[ 2.5 \times 12 = 30 \quad \text{and then} \quad 30 \times 12 = 360 \][/tex]
3. The volume is 360 cubic units, which matches the required volume.
So, \(2.5 \times 12 \times 12\) is a valid option.
### Option 5: 3.6 by 10 by 10
1. Calculate the volume:
[tex]\[ V = 3.6 \times 10 \times 10 \][/tex]
2. Perform the multiplication:
[tex]\[ 3.6 \times 10 = 36 \quad \text{and then} \quad 36 \times 10 = 360 \][/tex]
3. The volume is 360 cubic units, which matches the required volume.
So, \(3.6 \times 10 \times 10\) is a valid option.
### Conclusion
The three valid dimensions for the right square prism with a volume of 360 cubic units are:
1. \(3 \times 3 \times 40\)
2. \(2.5 \times 12 \times 12\)
3. \(3.6 \times 10 \times 10\)
These options satisfy the given volume requirement.
### Option 1: 3 by 3 by 40
1. Calculate the volume:
[tex]\[ V = \text{length} \times \text{width} \times \text{height} = 3 \times 3 \times 40 \][/tex]
2. Perform the multiplication:
[tex]\[ 3 \times 3 = 9 \quad \text{and then} \quad 9 \times 40 = 360 \][/tex]
3. The volume is 360 cubic units, which matches the required volume.
So, \(3 \times 3 \times 40\) is a valid option.
### Option 2: 4 by 4 by 20
1. Calculate the volume:
[tex]\[ V = 4 \times 4 \times 20 \][/tex]
2. Perform the multiplication:
[tex]\[ 4 \times 4 = 16 \quad \text{and then} \quad 16 \times 20 = 320 \][/tex]
3. The volume is 320 cubic units, which does not match the required volume.
So, \(4 \times 4 \times 20\) is not a valid option.
### Option 3: 5 by 5 by 14
1. Calculate the volume:
[tex]\[ V = 5 \times 5 \times 14 \][/tex]
2. Perform the multiplication:
[tex]\[ 5 \times 5 = 25 \quad \text{and then} \quad 25 \times 14 = 350 \][/tex]
3. The volume is 350 cubic units, which does not match the required volume.
So, \(5 \times 5 \times 14\) is not a valid option.
### Option 4: 2.5 by 12 by 12
1. Calculate the volume:
[tex]\[ V = 2.5 \times 12 \times 12 \][/tex]
2. Perform the multiplication:
[tex]\[ 2.5 \times 12 = 30 \quad \text{and then} \quad 30 \times 12 = 360 \][/tex]
3. The volume is 360 cubic units, which matches the required volume.
So, \(2.5 \times 12 \times 12\) is a valid option.
### Option 5: 3.6 by 10 by 10
1. Calculate the volume:
[tex]\[ V = 3.6 \times 10 \times 10 \][/tex]
2. Perform the multiplication:
[tex]\[ 3.6 \times 10 = 36 \quad \text{and then} \quad 36 \times 10 = 360 \][/tex]
3. The volume is 360 cubic units, which matches the required volume.
So, \(3.6 \times 10 \times 10\) is a valid option.
### Conclusion
The three valid dimensions for the right square prism with a volume of 360 cubic units are:
1. \(3 \times 3 \times 40\)
2. \(2.5 \times 12 \times 12\)
3. \(3.6 \times 10 \times 10\)
These options satisfy the given volume requirement.
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.