Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine which of the given tables represents a linear function, let's analyze the changes in the \( y \) values relative to the changes in the \( x \) values in each table.
### Table 1:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & 5 \\ \hline 2 & 9 \\ \hline 3 & 5 \\ \hline 4 & 9 \\ \hline \end{array} \][/tex]
Calculate the differences in \( y \) and \( x \):
- Change from \( x = 1 \) to \( x = 2 \): \( \Delta y = 9 - 5 = 4 \), \( \Delta x = 2 - 1 = 1 \)
- Change from \( x = 2 \) to \( x = 3 \): \( \Delta y = 5 - 9 = -4 \), \( \Delta x = 3 - 2 = 1 \)
- Change from \( x = 3 \) to \( x = 4 \): \( \Delta y = 9 - 5 = 4 \), \( \Delta x = 4 - 3 = 1 \)
The differences in \( y \) (\(\Delta y\)) are not consistent; hence, this table does not represent a linear function.
### Table 2:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & -5 \\ \hline 2 & 10 \\ \hline 3 & -15 \\ \hline 4 & 20 \\ \hline \end{array} \][/tex]
Calculate the differences in \( y \) and \( x \):
- Change from \( x = 1 \) to \( x = 2 \): \( \Delta y = 10 - (-5) = 15 \), \( \Delta x = 2 - 1 = 1 \)
- Change from \( x = 2 \) to \( x = 3 \): \( \Delta y = -15 - 10 = -25 \), \( \Delta x = 3 - 2 = 1 \)
- Change from \( x = 3 \) to \( x = 4 \): \( \Delta y = 20 - (-15) = 35 \), \( \Delta x = 4 - 3 = 1 \)
The differences in \( y \) (\(\Delta y\)) are not consistent; hence, this table does not represent a linear function.
### Table 3:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & 5 \\ \hline 2 & 10 \\ \hline 3 & 20 \\ \hline 4 & 40 \\ \hline \end{array} \][/tex]
Calculate the differences in \( y \) and \( x \):
- Change from \( x = 1 \) to \( x = 2 \): \( \Delta y = 10 - 5 = 5 \), \( \Delta x = 2 - 1 = 1 \)
- Change from \( x = 2 \) to \( x = 3 \): \( \Delta y = 20 - 10 = 10 \), \( \Delta x = 3 - 2 = 1 \)
- Change from \( x = 3 \) to \( x = 4 \): \( \Delta y = 40 - 20 = 20 \), \( \Delta x = 4 - 3 = 1 \)
The differences in \( y \) (\(\Delta y\)) are not consistent; hence, this table does not represent a linear function.
### Table 4:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & -5 \\ \hline 2 & 0 \\ \hline \end{array} \][/tex]
Calculate the differences in \( y \) and \( x \):
- Change from \( x = 1 \) to \( x = 2 \): \( \Delta y = 0 - (-5) = 5 \), \( \Delta x = 2 - 1 = 1 \)
Since there is only one difference, we can directly compare it, and the difference is consistent:
Hence, Table 4 represents a linear function.
### Table 1:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & 5 \\ \hline 2 & 9 \\ \hline 3 & 5 \\ \hline 4 & 9 \\ \hline \end{array} \][/tex]
Calculate the differences in \( y \) and \( x \):
- Change from \( x = 1 \) to \( x = 2 \): \( \Delta y = 9 - 5 = 4 \), \( \Delta x = 2 - 1 = 1 \)
- Change from \( x = 2 \) to \( x = 3 \): \( \Delta y = 5 - 9 = -4 \), \( \Delta x = 3 - 2 = 1 \)
- Change from \( x = 3 \) to \( x = 4 \): \( \Delta y = 9 - 5 = 4 \), \( \Delta x = 4 - 3 = 1 \)
The differences in \( y \) (\(\Delta y\)) are not consistent; hence, this table does not represent a linear function.
### Table 2:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & -5 \\ \hline 2 & 10 \\ \hline 3 & -15 \\ \hline 4 & 20 \\ \hline \end{array} \][/tex]
Calculate the differences in \( y \) and \( x \):
- Change from \( x = 1 \) to \( x = 2 \): \( \Delta y = 10 - (-5) = 15 \), \( \Delta x = 2 - 1 = 1 \)
- Change from \( x = 2 \) to \( x = 3 \): \( \Delta y = -15 - 10 = -25 \), \( \Delta x = 3 - 2 = 1 \)
- Change from \( x = 3 \) to \( x = 4 \): \( \Delta y = 20 - (-15) = 35 \), \( \Delta x = 4 - 3 = 1 \)
The differences in \( y \) (\(\Delta y\)) are not consistent; hence, this table does not represent a linear function.
### Table 3:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & 5 \\ \hline 2 & 10 \\ \hline 3 & 20 \\ \hline 4 & 40 \\ \hline \end{array} \][/tex]
Calculate the differences in \( y \) and \( x \):
- Change from \( x = 1 \) to \( x = 2 \): \( \Delta y = 10 - 5 = 5 \), \( \Delta x = 2 - 1 = 1 \)
- Change from \( x = 2 \) to \( x = 3 \): \( \Delta y = 20 - 10 = 10 \), \( \Delta x = 3 - 2 = 1 \)
- Change from \( x = 3 \) to \( x = 4 \): \( \Delta y = 40 - 20 = 20 \), \( \Delta x = 4 - 3 = 1 \)
The differences in \( y \) (\(\Delta y\)) are not consistent; hence, this table does not represent a linear function.
### Table 4:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & -5 \\ \hline 2 & 0 \\ \hline \end{array} \][/tex]
Calculate the differences in \( y \) and \( x \):
- Change from \( x = 1 \) to \( x = 2 \): \( \Delta y = 0 - (-5) = 5 \), \( \Delta x = 2 - 1 = 1 \)
Since there is only one difference, we can directly compare it, and the difference is consistent:
Hence, Table 4 represents a linear function.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.