Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine which of the given tables represents a linear function, let's analyze the changes in the \( y \) values relative to the changes in the \( x \) values in each table.
### Table 1:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & 5 \\ \hline 2 & 9 \\ \hline 3 & 5 \\ \hline 4 & 9 \\ \hline \end{array} \][/tex]
Calculate the differences in \( y \) and \( x \):
- Change from \( x = 1 \) to \( x = 2 \): \( \Delta y = 9 - 5 = 4 \), \( \Delta x = 2 - 1 = 1 \)
- Change from \( x = 2 \) to \( x = 3 \): \( \Delta y = 5 - 9 = -4 \), \( \Delta x = 3 - 2 = 1 \)
- Change from \( x = 3 \) to \( x = 4 \): \( \Delta y = 9 - 5 = 4 \), \( \Delta x = 4 - 3 = 1 \)
The differences in \( y \) (\(\Delta y\)) are not consistent; hence, this table does not represent a linear function.
### Table 2:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & -5 \\ \hline 2 & 10 \\ \hline 3 & -15 \\ \hline 4 & 20 \\ \hline \end{array} \][/tex]
Calculate the differences in \( y \) and \( x \):
- Change from \( x = 1 \) to \( x = 2 \): \( \Delta y = 10 - (-5) = 15 \), \( \Delta x = 2 - 1 = 1 \)
- Change from \( x = 2 \) to \( x = 3 \): \( \Delta y = -15 - 10 = -25 \), \( \Delta x = 3 - 2 = 1 \)
- Change from \( x = 3 \) to \( x = 4 \): \( \Delta y = 20 - (-15) = 35 \), \( \Delta x = 4 - 3 = 1 \)
The differences in \( y \) (\(\Delta y\)) are not consistent; hence, this table does not represent a linear function.
### Table 3:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & 5 \\ \hline 2 & 10 \\ \hline 3 & 20 \\ \hline 4 & 40 \\ \hline \end{array} \][/tex]
Calculate the differences in \( y \) and \( x \):
- Change from \( x = 1 \) to \( x = 2 \): \( \Delta y = 10 - 5 = 5 \), \( \Delta x = 2 - 1 = 1 \)
- Change from \( x = 2 \) to \( x = 3 \): \( \Delta y = 20 - 10 = 10 \), \( \Delta x = 3 - 2 = 1 \)
- Change from \( x = 3 \) to \( x = 4 \): \( \Delta y = 40 - 20 = 20 \), \( \Delta x = 4 - 3 = 1 \)
The differences in \( y \) (\(\Delta y\)) are not consistent; hence, this table does not represent a linear function.
### Table 4:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & -5 \\ \hline 2 & 0 \\ \hline \end{array} \][/tex]
Calculate the differences in \( y \) and \( x \):
- Change from \( x = 1 \) to \( x = 2 \): \( \Delta y = 0 - (-5) = 5 \), \( \Delta x = 2 - 1 = 1 \)
Since there is only one difference, we can directly compare it, and the difference is consistent:
Hence, Table 4 represents a linear function.
### Table 1:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & 5 \\ \hline 2 & 9 \\ \hline 3 & 5 \\ \hline 4 & 9 \\ \hline \end{array} \][/tex]
Calculate the differences in \( y \) and \( x \):
- Change from \( x = 1 \) to \( x = 2 \): \( \Delta y = 9 - 5 = 4 \), \( \Delta x = 2 - 1 = 1 \)
- Change from \( x = 2 \) to \( x = 3 \): \( \Delta y = 5 - 9 = -4 \), \( \Delta x = 3 - 2 = 1 \)
- Change from \( x = 3 \) to \( x = 4 \): \( \Delta y = 9 - 5 = 4 \), \( \Delta x = 4 - 3 = 1 \)
The differences in \( y \) (\(\Delta y\)) are not consistent; hence, this table does not represent a linear function.
### Table 2:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & -5 \\ \hline 2 & 10 \\ \hline 3 & -15 \\ \hline 4 & 20 \\ \hline \end{array} \][/tex]
Calculate the differences in \( y \) and \( x \):
- Change from \( x = 1 \) to \( x = 2 \): \( \Delta y = 10 - (-5) = 15 \), \( \Delta x = 2 - 1 = 1 \)
- Change from \( x = 2 \) to \( x = 3 \): \( \Delta y = -15 - 10 = -25 \), \( \Delta x = 3 - 2 = 1 \)
- Change from \( x = 3 \) to \( x = 4 \): \( \Delta y = 20 - (-15) = 35 \), \( \Delta x = 4 - 3 = 1 \)
The differences in \( y \) (\(\Delta y\)) are not consistent; hence, this table does not represent a linear function.
### Table 3:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & 5 \\ \hline 2 & 10 \\ \hline 3 & 20 \\ \hline 4 & 40 \\ \hline \end{array} \][/tex]
Calculate the differences in \( y \) and \( x \):
- Change from \( x = 1 \) to \( x = 2 \): \( \Delta y = 10 - 5 = 5 \), \( \Delta x = 2 - 1 = 1 \)
- Change from \( x = 2 \) to \( x = 3 \): \( \Delta y = 20 - 10 = 10 \), \( \Delta x = 3 - 2 = 1 \)
- Change from \( x = 3 \) to \( x = 4 \): \( \Delta y = 40 - 20 = 20 \), \( \Delta x = 4 - 3 = 1 \)
The differences in \( y \) (\(\Delta y\)) are not consistent; hence, this table does not represent a linear function.
### Table 4:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & -5 \\ \hline 2 & 0 \\ \hline \end{array} \][/tex]
Calculate the differences in \( y \) and \( x \):
- Change from \( x = 1 \) to \( x = 2 \): \( \Delta y = 0 - (-5) = 5 \), \( \Delta x = 2 - 1 = 1 \)
Since there is only one difference, we can directly compare it, and the difference is consistent:
Hence, Table 4 represents a linear function.
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.