Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Sure, let's solve the equation \( v = 5u - 3z \) for \( z \) step-by-step.
1. Given Equation:
[tex]\[ v = 5u - 3z \][/tex]
2. Isolate the term involving \( z \):
To isolate the term involving \( z \), we need to get \( z \) by itself on one side of the equation. Let's move the term involving \( z \) to the other side by subtracting \( 5u \) from both sides.
[tex]\[ v - 5u = -3z \][/tex]
3. Solve for \( z \):
To solve for \( z \), we need to isolate \( z \). This can be done by dividing both sides of the equation by \(-3\).
[tex]\[ z = \frac{v - 5u}{-3} \][/tex]
4. Simplify the expression:
To simplify the fraction \(\frac{v - 5u}{-3}\), we can split the fraction into two parts:
[tex]\[ z = \frac{v}{-3} + \frac{5u}{-3} \][/tex]
5. Simplify the signs:
The fractions can be written with positive denominators, which gives us:
[tex]\[ z = -\frac{v}{3} + \frac{5u}{3} \][/tex]
6. Combine the fractions:
Combining the fractions, we get:
[tex]\[ z = \frac{5u - v}{3} \][/tex]
Hence, solving for \( z \) in terms of \( v \) and \( u \), we get:
[tex]\[ z = \frac{5u}{3} - \frac{v}{3} \][/tex]
1. Given Equation:
[tex]\[ v = 5u - 3z \][/tex]
2. Isolate the term involving \( z \):
To isolate the term involving \( z \), we need to get \( z \) by itself on one side of the equation. Let's move the term involving \( z \) to the other side by subtracting \( 5u \) from both sides.
[tex]\[ v - 5u = -3z \][/tex]
3. Solve for \( z \):
To solve for \( z \), we need to isolate \( z \). This can be done by dividing both sides of the equation by \(-3\).
[tex]\[ z = \frac{v - 5u}{-3} \][/tex]
4. Simplify the expression:
To simplify the fraction \(\frac{v - 5u}{-3}\), we can split the fraction into two parts:
[tex]\[ z = \frac{v}{-3} + \frac{5u}{-3} \][/tex]
5. Simplify the signs:
The fractions can be written with positive denominators, which gives us:
[tex]\[ z = -\frac{v}{3} + \frac{5u}{3} \][/tex]
6. Combine the fractions:
Combining the fractions, we get:
[tex]\[ z = \frac{5u - v}{3} \][/tex]
Hence, solving for \( z \) in terms of \( v \) and \( u \), we get:
[tex]\[ z = \frac{5u}{3} - \frac{v}{3} \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.