At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Sure, let's solve the equation \( v = 5u - 3z \) for \( z \) step-by-step.
1. Given Equation:
[tex]\[ v = 5u - 3z \][/tex]
2. Isolate the term involving \( z \):
To isolate the term involving \( z \), we need to get \( z \) by itself on one side of the equation. Let's move the term involving \( z \) to the other side by subtracting \( 5u \) from both sides.
[tex]\[ v - 5u = -3z \][/tex]
3. Solve for \( z \):
To solve for \( z \), we need to isolate \( z \). This can be done by dividing both sides of the equation by \(-3\).
[tex]\[ z = \frac{v - 5u}{-3} \][/tex]
4. Simplify the expression:
To simplify the fraction \(\frac{v - 5u}{-3}\), we can split the fraction into two parts:
[tex]\[ z = \frac{v}{-3} + \frac{5u}{-3} \][/tex]
5. Simplify the signs:
The fractions can be written with positive denominators, which gives us:
[tex]\[ z = -\frac{v}{3} + \frac{5u}{3} \][/tex]
6. Combine the fractions:
Combining the fractions, we get:
[tex]\[ z = \frac{5u - v}{3} \][/tex]
Hence, solving for \( z \) in terms of \( v \) and \( u \), we get:
[tex]\[ z = \frac{5u}{3} - \frac{v}{3} \][/tex]
1. Given Equation:
[tex]\[ v = 5u - 3z \][/tex]
2. Isolate the term involving \( z \):
To isolate the term involving \( z \), we need to get \( z \) by itself on one side of the equation. Let's move the term involving \( z \) to the other side by subtracting \( 5u \) from both sides.
[tex]\[ v - 5u = -3z \][/tex]
3. Solve for \( z \):
To solve for \( z \), we need to isolate \( z \). This can be done by dividing both sides of the equation by \(-3\).
[tex]\[ z = \frac{v - 5u}{-3} \][/tex]
4. Simplify the expression:
To simplify the fraction \(\frac{v - 5u}{-3}\), we can split the fraction into two parts:
[tex]\[ z = \frac{v}{-3} + \frac{5u}{-3} \][/tex]
5. Simplify the signs:
The fractions can be written with positive denominators, which gives us:
[tex]\[ z = -\frac{v}{3} + \frac{5u}{3} \][/tex]
6. Combine the fractions:
Combining the fractions, we get:
[tex]\[ z = \frac{5u - v}{3} \][/tex]
Hence, solving for \( z \) in terms of \( v \) and \( u \), we get:
[tex]\[ z = \frac{5u}{3} - \frac{v}{3} \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.