Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To solve for the value of \( p \) in the quadratic equation \( px^2 - x + 1 = 0 \), given that the sum of its zeroes (or roots) is -2, follow these steps:
1. Identify the properties of a quadratic equation:
For a quadratic equation of the form \( ax^2 + bx + c = 0 \), the sum of its roots \( (\alpha + \beta) \) is given by the formula:
[tex]\[ \alpha + \beta = -\frac{b}{a} \][/tex]
2. Substitute the coefficients:
In our given quadratic equation \( px^2 - x + 1 = 0 \), it's clear that:
[tex]\[ a = p, \quad b = -1, \quad \text{and} \quad c = 1 \][/tex]
3. Apply the sum of the roots formula:
According to the formula for the sum of the roots:
[tex]\[ \alpha + \beta = -\frac{b}{a} \][/tex]
Substituting the values of \( b \) and \( a \):
[tex]\[ \alpha + \beta = -\frac{-1}{p} = \frac{1}{p} \][/tex]
4. Use the given sum of the zeroes:
We are given that the sum of the zeroes is -2:
[tex]\[ \frac{1}{p} = -2 \][/tex]
5. Solve for \( p \):
To isolate \( p \), we solve the equation:
[tex]\[ \frac{1}{p} = -2 \implies p = -\frac{1}{2} \][/tex]
Hence, the value of \( p \) is:
[tex]\[ p = -0.5 \][/tex]
1. Identify the properties of a quadratic equation:
For a quadratic equation of the form \( ax^2 + bx + c = 0 \), the sum of its roots \( (\alpha + \beta) \) is given by the formula:
[tex]\[ \alpha + \beta = -\frac{b}{a} \][/tex]
2. Substitute the coefficients:
In our given quadratic equation \( px^2 - x + 1 = 0 \), it's clear that:
[tex]\[ a = p, \quad b = -1, \quad \text{and} \quad c = 1 \][/tex]
3. Apply the sum of the roots formula:
According to the formula for the sum of the roots:
[tex]\[ \alpha + \beta = -\frac{b}{a} \][/tex]
Substituting the values of \( b \) and \( a \):
[tex]\[ \alpha + \beta = -\frac{-1}{p} = \frac{1}{p} \][/tex]
4. Use the given sum of the zeroes:
We are given that the sum of the zeroes is -2:
[tex]\[ \frac{1}{p} = -2 \][/tex]
5. Solve for \( p \):
To isolate \( p \), we solve the equation:
[tex]\[ \frac{1}{p} = -2 \implies p = -\frac{1}{2} \][/tex]
Hence, the value of \( p \) is:
[tex]\[ p = -0.5 \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.