Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To find the horizontal asymptotes of the function \( f(x) = \frac{x^2 - 5x + 6}{x^3 - 8} \), we analyze the degrees of the polynomial in the numerator and the polynomial in the denominator.
1. Determine the degrees of the numerator and denominator:
- The degree of the numerator \( x^2 - 5x + 6 \) is 2 (since the highest power of \( x \) is \( x^2 \)).
- The degree of the denominator \( x^3 - 8 \) is 3 (since the highest power of \( x \) is \( x^3 \)).
2. Compare the degrees to determine the horizontal asymptote:
- If the degree of the numerator is less than the degree of the denominator, there is a horizontal asymptote at \( y = 0 \).
- If the degree of the numerator is equal to the degree of the denominator, the horizontal asymptote is \( y = \frac{\text{leading coefficient of the numerator}}{\text{leading coefficient of the denominator}} \).
- If the degree of the numerator is greater than the degree of the denominator, there is no horizontal asymptote (though there may be an oblique asymptote).
In this case:
- The degree of the numerator (2) is less than the degree of the denominator (3).
Therefore, the horizontal asymptote of the function \( f(x) \) is:
[tex]\[ y = 0 \][/tex]
This completes the analysis and identifies the horizontal asymptote for the given function [tex]\( f(x)=\frac{x^2-5 x+6}{x^3-8} \)[/tex]. The horizontal asymptote is [tex]\( y = 0 \)[/tex].
1. Determine the degrees of the numerator and denominator:
- The degree of the numerator \( x^2 - 5x + 6 \) is 2 (since the highest power of \( x \) is \( x^2 \)).
- The degree of the denominator \( x^3 - 8 \) is 3 (since the highest power of \( x \) is \( x^3 \)).
2. Compare the degrees to determine the horizontal asymptote:
- If the degree of the numerator is less than the degree of the denominator, there is a horizontal asymptote at \( y = 0 \).
- If the degree of the numerator is equal to the degree of the denominator, the horizontal asymptote is \( y = \frac{\text{leading coefficient of the numerator}}{\text{leading coefficient of the denominator}} \).
- If the degree of the numerator is greater than the degree of the denominator, there is no horizontal asymptote (though there may be an oblique asymptote).
In this case:
- The degree of the numerator (2) is less than the degree of the denominator (3).
Therefore, the horizontal asymptote of the function \( f(x) \) is:
[tex]\[ y = 0 \][/tex]
This completes the analysis and identifies the horizontal asymptote for the given function [tex]\( f(x)=\frac{x^2-5 x+6}{x^3-8} \)[/tex]. The horizontal asymptote is [tex]\( y = 0 \)[/tex].
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.