Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

Consider this reaction:

[tex]\[ 2 \, \text{Mg} (s) + \, \text{O}_2 (g) \rightarrow 2 \, \text{MgO} (s) \][/tex]

What volume (in milliliters) of oxygen gas is required to react with \(4.03 \, \text{g}\) of \( \text{Mg} \) at STP?

A. \(1850 \, \text{mL}\)

B. \(2880 \, \text{mL}\)

C. \(3710 \, \text{mL}\)

D. [tex]\(45,100 \, \text{mL}\)[/tex]


Sagot :

To determine the volume of oxygen gas required to react with \(4.03\) grams of magnesium (\(\text{Mg}\)) at standard temperature and pressure (STP), we need to follow a step-by-step process involving stoichiometric calculations and gas laws. Here’s the detailed solution:

1. Determine moles of magnesium:
- Molar mass of magnesium (\(\text{Mg}\)) \(\approx 24.305 \ \text{g/mol}\)
- Given mass of magnesium (\(\text{Mg}\)) = \(4.03 \ \text{g}\)
- Moles of \(\text{Mg}\) can be calculated using the formula:
[tex]\[ \text{moles of Mg} = \frac{\text{mass of Mg}}{\text{molar mass of Mg}} = \frac{4.03 \ \text{g}}{24.305 \ \text{g/mol}} \approx 0.1658 \ \text{mol} \][/tex]

2. Use the balanced chemical equation to find moles of \(\text{O}_2\):
- The balanced equation is:
[tex]\[ 2 \text{Mg} (s) + \text{O}_2 (g) \rightarrow 2 \text{MgO} (s) \][/tex]
- According to the balanced equation, \(2\) moles of \(\text{Mg}\) react with \(1\) mole of \(\text{O}_2\).
- Therefore, moles of \(\text{O}_2\) needed can be calculated as:
[tex]\[ \text{moles of O}_2 = \frac{\text{moles of Mg}}{2} = \frac{0.1658 \ \text{mol}}{2} \approx 0.0829 \ \text{mol} \][/tex]

3. Find the volume of \(\text{O}_2\) gas at STP:
- At STP, \(1 \ \text{mol}\) of any gas occupies a volume of \(22.414 \ \text{L}\) (standard molar volume).
- Volume of \(\text{O}_2\) in liters can be calculated using the formula:
[tex]\[ \text{volume of O}_2 (\text{L}) = \text{moles of O}_2 \times 22.414 \ \text{L/mol} = 0.0829 \ \text{mol} \times 22.414 \ \text{L/mol} \approx 1.858 \ \text{L} \][/tex]

4. Convert the volume from liters to milliliters:
- Since \(1 \ \text{L} = 1000 \ \text{mL}\), the volume in milliliters is:
[tex]\[ \text{volume of O}_2 (\text{mL}) = 1.858 \ \text{L} \times 1000 \ \text{mL/L} \approx 1858.2 \ \text{mL} \][/tex]

Hence, the volume of oxygen gas required to react with \(4.03 \ \text{g}\) of magnesium at STP is approximately \(1858.2 \ \text{mL}\). The closest match from the given options is:

[tex]\[ 1850 \ \text{mL} \][/tex]

Therefore, the correct answer is [tex]\(1850 \ \text{mL}\)[/tex].
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.