Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine which vectors could be representations of \( w \), given that the magnitude of the vector \(-3w\) is 15, we can follow these steps:
1. Understanding the magnitude relationship: The magnitude of a vector is given by the formula \( \| \mathbf{v} \| = \sqrt{v_1^2 + v_2^2} \), where \(\mathbf{v} = \langle v_1, v_2 \rangle\).
2. Given information: We are told that \(\|-3w\| = 15\). We know from vector operations that the magnitude of \(-3w\) can be expressed as \(\|-3 w\| = 3 \|w\|\), due to the property that multiplying a vector by a scalar scales its magnitude by the absolute value of that scalar. Therefore:
[tex]\[ \|-3w\| = 3 \|w\| \Rightarrow 3 \|w\| = 15 \Rightarrow \|w\| = \frac{15}{3} = 5 \][/tex]
3. Magnitude calculation for possible vectors: Now, we need to determine which of the given vectors have a magnitude of 5.
- For the vector \( \langle 1, -9 \rangle \):
[tex]\[ \sqrt{1^2 + (-9)^2} = \sqrt{1 + 81} = \sqrt{82} \approx 9.06 \neq 5 \][/tex]
- For the vector \( \langle -3, 4 \rangle \):
[tex]\[ \sqrt{(-3)^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5 \][/tex]
- For the vector \( \langle 4, 5 \rangle \):
[tex]\[ \sqrt{4^2 + 5^2} = \sqrt{16 + 25} = \sqrt{41} \approx 6.4 \neq 5 \][/tex]
- For the vector \( \langle -5, -3 \rangle \):
[tex]\[ \sqrt{(-5)^2 + (-3)^2} = \sqrt{25 + 9} = \sqrt{34} \approx 5.83 \neq 5 \][/tex]
- For the vector \( \langle 0, -5 \rangle \):
[tex]\[ \sqrt{0^2 + (-5)^2} = \sqrt{0 + 25} = \sqrt{25} = 5 \][/tex]
4. Conclusion: Therefore, the vectors that have the correct magnitude of 5 are:
[tex]\[ \langle -3, 4 \rangle \quad \text{and} \quad \langle 0, -5 \rangle \][/tex]
Hence, the possible representations of the vector [tex]\( w \)[/tex] given the magnitude of [tex]\(-3w\)[/tex] are [tex]\(\langle -3, 4 \rangle\)[/tex] and [tex]\(\langle 0, -5 \rangle\)[/tex].
1. Understanding the magnitude relationship: The magnitude of a vector is given by the formula \( \| \mathbf{v} \| = \sqrt{v_1^2 + v_2^2} \), where \(\mathbf{v} = \langle v_1, v_2 \rangle\).
2. Given information: We are told that \(\|-3w\| = 15\). We know from vector operations that the magnitude of \(-3w\) can be expressed as \(\|-3 w\| = 3 \|w\|\), due to the property that multiplying a vector by a scalar scales its magnitude by the absolute value of that scalar. Therefore:
[tex]\[ \|-3w\| = 3 \|w\| \Rightarrow 3 \|w\| = 15 \Rightarrow \|w\| = \frac{15}{3} = 5 \][/tex]
3. Magnitude calculation for possible vectors: Now, we need to determine which of the given vectors have a magnitude of 5.
- For the vector \( \langle 1, -9 \rangle \):
[tex]\[ \sqrt{1^2 + (-9)^2} = \sqrt{1 + 81} = \sqrt{82} \approx 9.06 \neq 5 \][/tex]
- For the vector \( \langle -3, 4 \rangle \):
[tex]\[ \sqrt{(-3)^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5 \][/tex]
- For the vector \( \langle 4, 5 \rangle \):
[tex]\[ \sqrt{4^2 + 5^2} = \sqrt{16 + 25} = \sqrt{41} \approx 6.4 \neq 5 \][/tex]
- For the vector \( \langle -5, -3 \rangle \):
[tex]\[ \sqrt{(-5)^2 + (-3)^2} = \sqrt{25 + 9} = \sqrt{34} \approx 5.83 \neq 5 \][/tex]
- For the vector \( \langle 0, -5 \rangle \):
[tex]\[ \sqrt{0^2 + (-5)^2} = \sqrt{0 + 25} = \sqrt{25} = 5 \][/tex]
4. Conclusion: Therefore, the vectors that have the correct magnitude of 5 are:
[tex]\[ \langle -3, 4 \rangle \quad \text{and} \quad \langle 0, -5 \rangle \][/tex]
Hence, the possible representations of the vector [tex]\( w \)[/tex] given the magnitude of [tex]\(-3w\)[/tex] are [tex]\(\langle -3, 4 \rangle\)[/tex] and [tex]\(\langle 0, -5 \rangle\)[/tex].
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.