Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine which vectors could be representations of \( w \), given that the magnitude of the vector \(-3w\) is 15, we can follow these steps:
1. Understanding the magnitude relationship: The magnitude of a vector is given by the formula \( \| \mathbf{v} \| = \sqrt{v_1^2 + v_2^2} \), where \(\mathbf{v} = \langle v_1, v_2 \rangle\).
2. Given information: We are told that \(\|-3w\| = 15\). We know from vector operations that the magnitude of \(-3w\) can be expressed as \(\|-3 w\| = 3 \|w\|\), due to the property that multiplying a vector by a scalar scales its magnitude by the absolute value of that scalar. Therefore:
[tex]\[ \|-3w\| = 3 \|w\| \Rightarrow 3 \|w\| = 15 \Rightarrow \|w\| = \frac{15}{3} = 5 \][/tex]
3. Magnitude calculation for possible vectors: Now, we need to determine which of the given vectors have a magnitude of 5.
- For the vector \( \langle 1, -9 \rangle \):
[tex]\[ \sqrt{1^2 + (-9)^2} = \sqrt{1 + 81} = \sqrt{82} \approx 9.06 \neq 5 \][/tex]
- For the vector \( \langle -3, 4 \rangle \):
[tex]\[ \sqrt{(-3)^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5 \][/tex]
- For the vector \( \langle 4, 5 \rangle \):
[tex]\[ \sqrt{4^2 + 5^2} = \sqrt{16 + 25} = \sqrt{41} \approx 6.4 \neq 5 \][/tex]
- For the vector \( \langle -5, -3 \rangle \):
[tex]\[ \sqrt{(-5)^2 + (-3)^2} = \sqrt{25 + 9} = \sqrt{34} \approx 5.83 \neq 5 \][/tex]
- For the vector \( \langle 0, -5 \rangle \):
[tex]\[ \sqrt{0^2 + (-5)^2} = \sqrt{0 + 25} = \sqrt{25} = 5 \][/tex]
4. Conclusion: Therefore, the vectors that have the correct magnitude of 5 are:
[tex]\[ \langle -3, 4 \rangle \quad \text{and} \quad \langle 0, -5 \rangle \][/tex]
Hence, the possible representations of the vector [tex]\( w \)[/tex] given the magnitude of [tex]\(-3w\)[/tex] are [tex]\(\langle -3, 4 \rangle\)[/tex] and [tex]\(\langle 0, -5 \rangle\)[/tex].
1. Understanding the magnitude relationship: The magnitude of a vector is given by the formula \( \| \mathbf{v} \| = \sqrt{v_1^2 + v_2^2} \), where \(\mathbf{v} = \langle v_1, v_2 \rangle\).
2. Given information: We are told that \(\|-3w\| = 15\). We know from vector operations that the magnitude of \(-3w\) can be expressed as \(\|-3 w\| = 3 \|w\|\), due to the property that multiplying a vector by a scalar scales its magnitude by the absolute value of that scalar. Therefore:
[tex]\[ \|-3w\| = 3 \|w\| \Rightarrow 3 \|w\| = 15 \Rightarrow \|w\| = \frac{15}{3} = 5 \][/tex]
3. Magnitude calculation for possible vectors: Now, we need to determine which of the given vectors have a magnitude of 5.
- For the vector \( \langle 1, -9 \rangle \):
[tex]\[ \sqrt{1^2 + (-9)^2} = \sqrt{1 + 81} = \sqrt{82} \approx 9.06 \neq 5 \][/tex]
- For the vector \( \langle -3, 4 \rangle \):
[tex]\[ \sqrt{(-3)^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5 \][/tex]
- For the vector \( \langle 4, 5 \rangle \):
[tex]\[ \sqrt{4^2 + 5^2} = \sqrt{16 + 25} = \sqrt{41} \approx 6.4 \neq 5 \][/tex]
- For the vector \( \langle -5, -3 \rangle \):
[tex]\[ \sqrt{(-5)^2 + (-3)^2} = \sqrt{25 + 9} = \sqrt{34} \approx 5.83 \neq 5 \][/tex]
- For the vector \( \langle 0, -5 \rangle \):
[tex]\[ \sqrt{0^2 + (-5)^2} = \sqrt{0 + 25} = \sqrt{25} = 5 \][/tex]
4. Conclusion: Therefore, the vectors that have the correct magnitude of 5 are:
[tex]\[ \langle -3, 4 \rangle \quad \text{and} \quad \langle 0, -5 \rangle \][/tex]
Hence, the possible representations of the vector [tex]\( w \)[/tex] given the magnitude of [tex]\(-3w\)[/tex] are [tex]\(\langle -3, 4 \rangle\)[/tex] and [tex]\(\langle 0, -5 \rangle\)[/tex].
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.