At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To find the correct substitution of the values \(a = -3\), \(b = -2\), and \(c = 6\) into the quadratic formula \(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\), we'll follow these steps:
1. Identify the values of \(a\), \(b\), and \(c\):
- \(a = -3\)
- \(b = -2\)
- \(c = 6\)
2. Substitute these values into the quadratic formula.
Remember the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Substitute \(b = -2\), \(a = -3\), and \(c = 6\):
[tex]\[ x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4(-3)(6)}}{2(-3)} \][/tex]
This correctly includes the values from the equation \(0 = -3x^2 - 2x + 6\). Let's break down what each part represents:
- \(-b\) becomes \(-(-2)\)
- \(b^2\) becomes \((-2)^2\)
- \(-4ac\) becomes \(-4(-3)(6)\)
- \(2a\) becomes \(2(-3)\)
3. Evaluate the equation inside the square root and the denominator:
[tex]\[ x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4(-3)(6)}}{2(-3)} \][/tex]
This simplifies to:
[tex]\[ x = \frac{2 \pm \sqrt{4 + 72}}{-6} \][/tex]
Thus, the correct substitution of the values \(a = -3\), \(b = -2\), and \(c = 6\) into the quadratic formula is:
[tex]\[ x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4(-3)(6)}}{2(-3)} \][/tex]
1. Identify the values of \(a\), \(b\), and \(c\):
- \(a = -3\)
- \(b = -2\)
- \(c = 6\)
2. Substitute these values into the quadratic formula.
Remember the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Substitute \(b = -2\), \(a = -3\), and \(c = 6\):
[tex]\[ x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4(-3)(6)}}{2(-3)} \][/tex]
This correctly includes the values from the equation \(0 = -3x^2 - 2x + 6\). Let's break down what each part represents:
- \(-b\) becomes \(-(-2)\)
- \(b^2\) becomes \((-2)^2\)
- \(-4ac\) becomes \(-4(-3)(6)\)
- \(2a\) becomes \(2(-3)\)
3. Evaluate the equation inside the square root and the denominator:
[tex]\[ x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4(-3)(6)}}{2(-3)} \][/tex]
This simplifies to:
[tex]\[ x = \frac{2 \pm \sqrt{4 + 72}}{-6} \][/tex]
Thus, the correct substitution of the values \(a = -3\), \(b = -2\), and \(c = 6\) into the quadratic formula is:
[tex]\[ x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4(-3)(6)}}{2(-3)} \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.