At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Sure! Let's go through the steps necessary to arrange the given vector operations in ascending order of the magnitudes of their resultant vectors.
Given vectors:
- \( u = \langle 9, -2 \rangle \)
- \( v = \langle -1, 7 \rangle \)
- \( w = \langle -5, -8 \rangle \)
We are given five vector operations:
1. \( -\frac{1}{2} u + 5 v \)
2. \( \frac{1}{6} (u + 2 v - w) \)
3. \( \frac{5}{2} u - 3 w \)
4. \( -4 v + \frac{1}{2} w \)
5. \( 3 u - v - \frac{5}{2} w \)
To compare these, let's find their magnitudes and determine their order.
### 1. Magnitude of \( -\frac{1}{2} u + 5 v \)
Resultant vector: \(\langle -51/2, 177/2 \rangle \)
Magnitude: \( 37.2324 \)
### 2. Magnitude of \( \frac{1}{6} (u + 2 v - w) \)
Resultant vector: \(\langle 1, 8/3 \rangle \)
Magnitude: \( 3.8873 \)
### 3. Magnitude of \( \frac{5}{2} u - 3 w \)
Resultant vector: \(\langle 67, -19 \rangle \)
Magnitude: \( 42.0387 \)
### 4. Magnitude of \( -4 v + 0.5 w \)
Resultant vector: \(\langle -3/2, -38 \rangle \)
Magnitude: \( 32.0351 \)
### 5. Magnitude of \( 3 u - v - \frac{5}{2} w \)
Resultant vector: \(\langle 89.5, -17.5 \rangle \)
Magnitude: \( 41.1005 \)
### Ordering by Magnitude
We place the vector operations in ascending order of their magnitudes:
1. \( \frac{1}{6} (u + 2 v - w) \) with magnitude \( 3.8873 \)
2. \( -4 v + \frac{1}{2} w \) with magnitude \( 32.0351 \)
3. \( -\frac{1}{2} u + 5 v \) with magnitude \( 37.2324 \)
4. \( 3 u - v - \frac{5}{2} w \) with magnitude \( 41.1005 \)
5. \( \frac{5}{2} u - 3 w \) with magnitude \( 42.0387 \)
Thus, the vector operations in ascending order of the magnitudes of their resultant vectors are:
\[
\begin{array}{c}
\\
\frac{1}{6}(u+2 v-w) \\
\\
\hline
\\
-4 v+\frac{1}{2} w \\
\\
\hline
\\
-\frac{1}{2} u+5 v \\
\\
\hline
\\
3 u-v-\frac{5}{2} w \\
\\
\hline
\\
\frac{5}{2} u-3 w \\
\\
\end{array}
Given vectors:
- \( u = \langle 9, -2 \rangle \)
- \( v = \langle -1, 7 \rangle \)
- \( w = \langle -5, -8 \rangle \)
We are given five vector operations:
1. \( -\frac{1}{2} u + 5 v \)
2. \( \frac{1}{6} (u + 2 v - w) \)
3. \( \frac{5}{2} u - 3 w \)
4. \( -4 v + \frac{1}{2} w \)
5. \( 3 u - v - \frac{5}{2} w \)
To compare these, let's find their magnitudes and determine their order.
### 1. Magnitude of \( -\frac{1}{2} u + 5 v \)
Resultant vector: \(\langle -51/2, 177/2 \rangle \)
Magnitude: \( 37.2324 \)
### 2. Magnitude of \( \frac{1}{6} (u + 2 v - w) \)
Resultant vector: \(\langle 1, 8/3 \rangle \)
Magnitude: \( 3.8873 \)
### 3. Magnitude of \( \frac{5}{2} u - 3 w \)
Resultant vector: \(\langle 67, -19 \rangle \)
Magnitude: \( 42.0387 \)
### 4. Magnitude of \( -4 v + 0.5 w \)
Resultant vector: \(\langle -3/2, -38 \rangle \)
Magnitude: \( 32.0351 \)
### 5. Magnitude of \( 3 u - v - \frac{5}{2} w \)
Resultant vector: \(\langle 89.5, -17.5 \rangle \)
Magnitude: \( 41.1005 \)
### Ordering by Magnitude
We place the vector operations in ascending order of their magnitudes:
1. \( \frac{1}{6} (u + 2 v - w) \) with magnitude \( 3.8873 \)
2. \( -4 v + \frac{1}{2} w \) with magnitude \( 32.0351 \)
3. \( -\frac{1}{2} u + 5 v \) with magnitude \( 37.2324 \)
4. \( 3 u - v - \frac{5}{2} w \) with magnitude \( 41.1005 \)
5. \( \frac{5}{2} u - 3 w \) with magnitude \( 42.0387 \)
Thus, the vector operations in ascending order of the magnitudes of their resultant vectors are:
\[
\begin{array}{c}
\\
\frac{1}{6}(u+2 v-w) \\
\\
\hline
\\
-4 v+\frac{1}{2} w \\
\\
\hline
\\
-\frac{1}{2} u+5 v \\
\\
\hline
\\
3 u-v-\frac{5}{2} w \\
\\
\hline
\\
\frac{5}{2} u-3 w \\
\\
\end{array}
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.