Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Let's break down the solution step-by-step to determine the standard deviation of the sampling distribution for the difference in means \(\bar{x}_A - \bar{x}_C\) for Alex and Chris.
Given Data:
1. Alex's mean time \(\mu_A = 5.28\) minutes, standard deviation \(\sigma_A = 0.38\) minutes.
2. Chris's mean time \(\mu_C = 5.45\) minutes, standard deviation \(\sigma_C = 0.20\) minutes.
3. Sample size for Alex \(n_A = 10\).
4. Sample size for Chris \(n_C = 15\).
To find the standard deviation of the difference in sample means \(\bar{x}_A - \bar{x}_C\), we use the formula for the standard deviation of the difference between two independent sample means:
[tex]\[ \sigma_{\bar{x}_A - \bar{x}_C} = \sqrt{\left(\frac{\sigma_A^2}{n_A}\right) + \left(\frac{\sigma_C^2}{n_C}\right)} \][/tex]
Following the steps:
1. Compute \(\frac{\sigma_A^2}{n_A}\):
[tex]\[ \frac{0.38^2}{10} = \frac{0.1444}{10} = 0.01444 \][/tex]
2. Compute \(\frac{\sigma_C^2}{n_C}\):
[tex]\[ \frac{0.20^2}{15} = \frac{0.04}{15} = 0.002667 \][/tex]
3. Add these two values together:
[tex]\[ 0.01444 + 0.002667 = 0.017107 \][/tex]
4. Finally, take the square root of the sum to find the standard deviation:
[tex]\[ \sqrt{0.017107} \approx 0.130792 \][/tex]
Hence, the standard deviation of the sampling distribution for \(\bar{x}_A - \bar{x}_C\) is approximately \(0.130792\).
Given the options:
1. 0.09
2. 0.13
3. 0.17
4. 0.18
The closest value to our calculated result \(0.130792\) is \(0.13\).
Therefore, the correct answer is:
[tex]\[ \boxed{0.13} \][/tex]
Given Data:
1. Alex's mean time \(\mu_A = 5.28\) minutes, standard deviation \(\sigma_A = 0.38\) minutes.
2. Chris's mean time \(\mu_C = 5.45\) minutes, standard deviation \(\sigma_C = 0.20\) minutes.
3. Sample size for Alex \(n_A = 10\).
4. Sample size for Chris \(n_C = 15\).
To find the standard deviation of the difference in sample means \(\bar{x}_A - \bar{x}_C\), we use the formula for the standard deviation of the difference between two independent sample means:
[tex]\[ \sigma_{\bar{x}_A - \bar{x}_C} = \sqrt{\left(\frac{\sigma_A^2}{n_A}\right) + \left(\frac{\sigma_C^2}{n_C}\right)} \][/tex]
Following the steps:
1. Compute \(\frac{\sigma_A^2}{n_A}\):
[tex]\[ \frac{0.38^2}{10} = \frac{0.1444}{10} = 0.01444 \][/tex]
2. Compute \(\frac{\sigma_C^2}{n_C}\):
[tex]\[ \frac{0.20^2}{15} = \frac{0.04}{15} = 0.002667 \][/tex]
3. Add these two values together:
[tex]\[ 0.01444 + 0.002667 = 0.017107 \][/tex]
4. Finally, take the square root of the sum to find the standard deviation:
[tex]\[ \sqrt{0.017107} \approx 0.130792 \][/tex]
Hence, the standard deviation of the sampling distribution for \(\bar{x}_A - \bar{x}_C\) is approximately \(0.130792\).
Given the options:
1. 0.09
2. 0.13
3. 0.17
4. 0.18
The closest value to our calculated result \(0.130792\) is \(0.13\).
Therefore, the correct answer is:
[tex]\[ \boxed{0.13} \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.