At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Let's break down the solution step-by-step to determine the standard deviation of the sampling distribution for the difference in means \(\bar{x}_A - \bar{x}_C\) for Alex and Chris.
Given Data:
1. Alex's mean time \(\mu_A = 5.28\) minutes, standard deviation \(\sigma_A = 0.38\) minutes.
2. Chris's mean time \(\mu_C = 5.45\) minutes, standard deviation \(\sigma_C = 0.20\) minutes.
3. Sample size for Alex \(n_A = 10\).
4. Sample size for Chris \(n_C = 15\).
To find the standard deviation of the difference in sample means \(\bar{x}_A - \bar{x}_C\), we use the formula for the standard deviation of the difference between two independent sample means:
[tex]\[ \sigma_{\bar{x}_A - \bar{x}_C} = \sqrt{\left(\frac{\sigma_A^2}{n_A}\right) + \left(\frac{\sigma_C^2}{n_C}\right)} \][/tex]
Following the steps:
1. Compute \(\frac{\sigma_A^2}{n_A}\):
[tex]\[ \frac{0.38^2}{10} = \frac{0.1444}{10} = 0.01444 \][/tex]
2. Compute \(\frac{\sigma_C^2}{n_C}\):
[tex]\[ \frac{0.20^2}{15} = \frac{0.04}{15} = 0.002667 \][/tex]
3. Add these two values together:
[tex]\[ 0.01444 + 0.002667 = 0.017107 \][/tex]
4. Finally, take the square root of the sum to find the standard deviation:
[tex]\[ \sqrt{0.017107} \approx 0.130792 \][/tex]
Hence, the standard deviation of the sampling distribution for \(\bar{x}_A - \bar{x}_C\) is approximately \(0.130792\).
Given the options:
1. 0.09
2. 0.13
3. 0.17
4. 0.18
The closest value to our calculated result \(0.130792\) is \(0.13\).
Therefore, the correct answer is:
[tex]\[ \boxed{0.13} \][/tex]
Given Data:
1. Alex's mean time \(\mu_A = 5.28\) minutes, standard deviation \(\sigma_A = 0.38\) minutes.
2. Chris's mean time \(\mu_C = 5.45\) minutes, standard deviation \(\sigma_C = 0.20\) minutes.
3. Sample size for Alex \(n_A = 10\).
4. Sample size for Chris \(n_C = 15\).
To find the standard deviation of the difference in sample means \(\bar{x}_A - \bar{x}_C\), we use the formula for the standard deviation of the difference between two independent sample means:
[tex]\[ \sigma_{\bar{x}_A - \bar{x}_C} = \sqrt{\left(\frac{\sigma_A^2}{n_A}\right) + \left(\frac{\sigma_C^2}{n_C}\right)} \][/tex]
Following the steps:
1. Compute \(\frac{\sigma_A^2}{n_A}\):
[tex]\[ \frac{0.38^2}{10} = \frac{0.1444}{10} = 0.01444 \][/tex]
2. Compute \(\frac{\sigma_C^2}{n_C}\):
[tex]\[ \frac{0.20^2}{15} = \frac{0.04}{15} = 0.002667 \][/tex]
3. Add these two values together:
[tex]\[ 0.01444 + 0.002667 = 0.017107 \][/tex]
4. Finally, take the square root of the sum to find the standard deviation:
[tex]\[ \sqrt{0.017107} \approx 0.130792 \][/tex]
Hence, the standard deviation of the sampling distribution for \(\bar{x}_A - \bar{x}_C\) is approximately \(0.130792\).
Given the options:
1. 0.09
2. 0.13
3. 0.17
4. 0.18
The closest value to our calculated result \(0.130792\) is \(0.13\).
Therefore, the correct answer is:
[tex]\[ \boxed{0.13} \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.