Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Let's break down the solution step-by-step to determine the standard deviation of the sampling distribution for the difference in means \(\bar{x}_A - \bar{x}_C\) for Alex and Chris.
Given Data:
1. Alex's mean time \(\mu_A = 5.28\) minutes, standard deviation \(\sigma_A = 0.38\) minutes.
2. Chris's mean time \(\mu_C = 5.45\) minutes, standard deviation \(\sigma_C = 0.20\) minutes.
3. Sample size for Alex \(n_A = 10\).
4. Sample size for Chris \(n_C = 15\).
To find the standard deviation of the difference in sample means \(\bar{x}_A - \bar{x}_C\), we use the formula for the standard deviation of the difference between two independent sample means:
[tex]\[ \sigma_{\bar{x}_A - \bar{x}_C} = \sqrt{\left(\frac{\sigma_A^2}{n_A}\right) + \left(\frac{\sigma_C^2}{n_C}\right)} \][/tex]
Following the steps:
1. Compute \(\frac{\sigma_A^2}{n_A}\):
[tex]\[ \frac{0.38^2}{10} = \frac{0.1444}{10} = 0.01444 \][/tex]
2. Compute \(\frac{\sigma_C^2}{n_C}\):
[tex]\[ \frac{0.20^2}{15} = \frac{0.04}{15} = 0.002667 \][/tex]
3. Add these two values together:
[tex]\[ 0.01444 + 0.002667 = 0.017107 \][/tex]
4. Finally, take the square root of the sum to find the standard deviation:
[tex]\[ \sqrt{0.017107} \approx 0.130792 \][/tex]
Hence, the standard deviation of the sampling distribution for \(\bar{x}_A - \bar{x}_C\) is approximately \(0.130792\).
Given the options:
1. 0.09
2. 0.13
3. 0.17
4. 0.18
The closest value to our calculated result \(0.130792\) is \(0.13\).
Therefore, the correct answer is:
[tex]\[ \boxed{0.13} \][/tex]
Given Data:
1. Alex's mean time \(\mu_A = 5.28\) minutes, standard deviation \(\sigma_A = 0.38\) minutes.
2. Chris's mean time \(\mu_C = 5.45\) minutes, standard deviation \(\sigma_C = 0.20\) minutes.
3. Sample size for Alex \(n_A = 10\).
4. Sample size for Chris \(n_C = 15\).
To find the standard deviation of the difference in sample means \(\bar{x}_A - \bar{x}_C\), we use the formula for the standard deviation of the difference between two independent sample means:
[tex]\[ \sigma_{\bar{x}_A - \bar{x}_C} = \sqrt{\left(\frac{\sigma_A^2}{n_A}\right) + \left(\frac{\sigma_C^2}{n_C}\right)} \][/tex]
Following the steps:
1. Compute \(\frac{\sigma_A^2}{n_A}\):
[tex]\[ \frac{0.38^2}{10} = \frac{0.1444}{10} = 0.01444 \][/tex]
2. Compute \(\frac{\sigma_C^2}{n_C}\):
[tex]\[ \frac{0.20^2}{15} = \frac{0.04}{15} = 0.002667 \][/tex]
3. Add these two values together:
[tex]\[ 0.01444 + 0.002667 = 0.017107 \][/tex]
4. Finally, take the square root of the sum to find the standard deviation:
[tex]\[ \sqrt{0.017107} \approx 0.130792 \][/tex]
Hence, the standard deviation of the sampling distribution for \(\bar{x}_A - \bar{x}_C\) is approximately \(0.130792\).
Given the options:
1. 0.09
2. 0.13
3. 0.17
4. 0.18
The closest value to our calculated result \(0.130792\) is \(0.13\).
Therefore, the correct answer is:
[tex]\[ \boxed{0.13} \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.