Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Sure, let's solve this system of equations step-by-step.
The given system of equations is:
[tex]\[ \begin{cases} y - 2x = 8 \\ 2x + 5y = 16 \end{cases} \][/tex]
Step 1: Solve the first equation for \( y \):
[tex]\[ y - 2x = 8 \][/tex]
Add \( 2x \) to both sides:
[tex]\[ y = 2x + 8 \][/tex]
Step 2: Substitute \( y = 2x + 8 \) into the second equation:
The second equation is:
[tex]\[ 2x + 5y = 16 \][/tex]
Substitute \( y \) from step 1:
[tex]\[ 2x + 5(2x + 8) = 16 \][/tex]
Step 3: Expand and simplify:
[tex]\[ 2x + 10x + 40 = 16 \][/tex]
Combine like terms:
[tex]\[ 12x + 40 = 16 \][/tex]
Step 4: Solve for \( x \):
Subtract 40 from both sides:
[tex]\[ 12x = 16 - 40 \][/tex]
[tex]\[ 12x = -24 \][/tex]
Divide both sides by 12:
[tex]\[ x = -2 \][/tex]
Step 5: Substitute \( x = -2 \) back into the expression for \( y \):
We already have \( y = 2x + 8 \):
[tex]\[ y = 2(-2) + 8 \][/tex]
[tex]\[ y = -4 + 8 \][/tex]
[tex]\[ y = 4 \][/tex]
Solution:
The solution to the system of equations is:
[tex]\[ x = -2 \quad \text{and} \quad y = 4 \][/tex]
So the coordinates [tex]\((x, y)\)[/tex] that satisfy both equations are [tex]\((-2, 4)\)[/tex].
The given system of equations is:
[tex]\[ \begin{cases} y - 2x = 8 \\ 2x + 5y = 16 \end{cases} \][/tex]
Step 1: Solve the first equation for \( y \):
[tex]\[ y - 2x = 8 \][/tex]
Add \( 2x \) to both sides:
[tex]\[ y = 2x + 8 \][/tex]
Step 2: Substitute \( y = 2x + 8 \) into the second equation:
The second equation is:
[tex]\[ 2x + 5y = 16 \][/tex]
Substitute \( y \) from step 1:
[tex]\[ 2x + 5(2x + 8) = 16 \][/tex]
Step 3: Expand and simplify:
[tex]\[ 2x + 10x + 40 = 16 \][/tex]
Combine like terms:
[tex]\[ 12x + 40 = 16 \][/tex]
Step 4: Solve for \( x \):
Subtract 40 from both sides:
[tex]\[ 12x = 16 - 40 \][/tex]
[tex]\[ 12x = -24 \][/tex]
Divide both sides by 12:
[tex]\[ x = -2 \][/tex]
Step 5: Substitute \( x = -2 \) back into the expression for \( y \):
We already have \( y = 2x + 8 \):
[tex]\[ y = 2(-2) + 8 \][/tex]
[tex]\[ y = -4 + 8 \][/tex]
[tex]\[ y = 4 \][/tex]
Solution:
The solution to the system of equations is:
[tex]\[ x = -2 \quad \text{and} \quad y = 4 \][/tex]
So the coordinates [tex]\((x, y)\)[/tex] that satisfy both equations are [tex]\((-2, 4)\)[/tex].
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.