Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

A triangle has sides \(a = 5\) and \(b = 1\) and angle \(C = 40^{\circ}\). Find the length of side \(c\).

The length of side \(c\) is \(\square\).

(Round to three decimal places as needed.)


Sagot :

To find the length of side \( c \) in a triangle where sides \( a = 5 \), \( b = 1 \), and angle \( C = 40^\circ \), we can use the Law of Cosines. The Law of Cosines states:

[tex]\[ c^2 = a^2 + b^2 - 2ab \cos(C) \][/tex]

Here is the step-by-step solution:

1. Convert the angle from degrees to radians:
Since the formula uses the cosine of the angle, and most calculators or computations work with radians, we convert \( 40^\circ \) to radians:
[tex]\[ C = 40^\circ = 0.6981 \text{ radians} \quad \text{(approx)} \][/tex]

2. Apply the Law of Cosines:
Substitute the values into the Law of Cosines formula:
[tex]\[ c^2 = 5^2 + 1^2 - 2 \cdot 5 \cdot 1 \cdot \cos(40^\circ) \][/tex]
[tex]\[ c^2 = 25 + 1 - 10 \cdot \cos(0.6981) \][/tex]

3. Calculate the cosine value:
The cosine of \( 0.6981 \) radians is approximately \( 0.766 \) (rounded to three decimal places).

4. Complete the formula:
[tex]\[ c^2 = 26 - 10 \cdot 0.766 \][/tex]
[tex]\[ c^2 = 26 - 7.66 \][/tex]
[tex]\[ c^2 = 18.34 \quad \text{(rounded to two decimal places)} \][/tex]

5. Solve for \( c \):
Take the square root of both sides to find \( c \):
[tex]\[ c = \sqrt{18.34} \approx 4.282 \quad \text{(rounded to three decimal places)} \][/tex]

Hence, the length of side [tex]\( c \)[/tex] is [tex]\( 4.282 \)[/tex].