Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To find the length of side \( c \) in a triangle where sides \( a = 5 \), \( b = 1 \), and angle \( C = 40^\circ \), we can use the Law of Cosines. The Law of Cosines states:
[tex]\[ c^2 = a^2 + b^2 - 2ab \cos(C) \][/tex]
Here is the step-by-step solution:
1. Convert the angle from degrees to radians:
Since the formula uses the cosine of the angle, and most calculators or computations work with radians, we convert \( 40^\circ \) to radians:
[tex]\[ C = 40^\circ = 0.6981 \text{ radians} \quad \text{(approx)} \][/tex]
2. Apply the Law of Cosines:
Substitute the values into the Law of Cosines formula:
[tex]\[ c^2 = 5^2 + 1^2 - 2 \cdot 5 \cdot 1 \cdot \cos(40^\circ) \][/tex]
[tex]\[ c^2 = 25 + 1 - 10 \cdot \cos(0.6981) \][/tex]
3. Calculate the cosine value:
The cosine of \( 0.6981 \) radians is approximately \( 0.766 \) (rounded to three decimal places).
4. Complete the formula:
[tex]\[ c^2 = 26 - 10 \cdot 0.766 \][/tex]
[tex]\[ c^2 = 26 - 7.66 \][/tex]
[tex]\[ c^2 = 18.34 \quad \text{(rounded to two decimal places)} \][/tex]
5. Solve for \( c \):
Take the square root of both sides to find \( c \):
[tex]\[ c = \sqrt{18.34} \approx 4.282 \quad \text{(rounded to three decimal places)} \][/tex]
Hence, the length of side [tex]\( c \)[/tex] is [tex]\( 4.282 \)[/tex].
[tex]\[ c^2 = a^2 + b^2 - 2ab \cos(C) \][/tex]
Here is the step-by-step solution:
1. Convert the angle from degrees to radians:
Since the formula uses the cosine of the angle, and most calculators or computations work with radians, we convert \( 40^\circ \) to radians:
[tex]\[ C = 40^\circ = 0.6981 \text{ radians} \quad \text{(approx)} \][/tex]
2. Apply the Law of Cosines:
Substitute the values into the Law of Cosines formula:
[tex]\[ c^2 = 5^2 + 1^2 - 2 \cdot 5 \cdot 1 \cdot \cos(40^\circ) \][/tex]
[tex]\[ c^2 = 25 + 1 - 10 \cdot \cos(0.6981) \][/tex]
3. Calculate the cosine value:
The cosine of \( 0.6981 \) radians is approximately \( 0.766 \) (rounded to three decimal places).
4. Complete the formula:
[tex]\[ c^2 = 26 - 10 \cdot 0.766 \][/tex]
[tex]\[ c^2 = 26 - 7.66 \][/tex]
[tex]\[ c^2 = 18.34 \quad \text{(rounded to two decimal places)} \][/tex]
5. Solve for \( c \):
Take the square root of both sides to find \( c \):
[tex]\[ c = \sqrt{18.34} \approx 4.282 \quad \text{(rounded to three decimal places)} \][/tex]
Hence, the length of side [tex]\( c \)[/tex] is [tex]\( 4.282 \)[/tex].
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.