At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine the factors of the quadratic function given its zeros, let's go through the concept step-by-step.
1. Understanding Zeros of a Quadratic Function:
- A quadratic function \( f(x) \) can be expressed in the factored form as \( f(x) = a(x - \text{zero1})(x - \text{zero2}) \), where \( \text{zero1} \) and \( \text{zero2} \) are the zeros (or roots) of the function.
2. Given Zeros:
- In the problem, the zeros of the quadratic function are \( 3 \) and \( 8 \).
3. Formulating the Factors:
- Using the zeros \( \text{zero1} = 3 \) and \( \text{zero2} = 8 \), we form the factors by inserting these values into the expressions \( (x - \text{zero1}) \) and \( (x - \text{zero2}) \).
- Therefore, the factors of the quadratic function are:
[tex]\[ (x - 3) \quad \text{and} \quad (x - 8) \][/tex]
4. Verifying the Options:
- Now, we match these factors with the given answer choices.
- A. \( (x + 8) \ \text{and} \ (x - 3) \)
- B. \( (x - 8) \ \text{and} \ (x + 3) \)
- C. \( (x + 8) \ \text{and} \ (x + 3) \)
- D. \( (x - 8) \ \text{and} \ (x - 3) \)
5. Correct Answer:
- From our formulation, the correct factors \((x - 3)\) and \((x - 8)\) correspond to option D: \((x - 8)\) and \((x - 3)\).
Hence, the correct answer is:
[tex]\[ \boxed{D. (x-8) \ \text{and} \ (x-3)} \][/tex]
1. Understanding Zeros of a Quadratic Function:
- A quadratic function \( f(x) \) can be expressed in the factored form as \( f(x) = a(x - \text{zero1})(x - \text{zero2}) \), where \( \text{zero1} \) and \( \text{zero2} \) are the zeros (or roots) of the function.
2. Given Zeros:
- In the problem, the zeros of the quadratic function are \( 3 \) and \( 8 \).
3. Formulating the Factors:
- Using the zeros \( \text{zero1} = 3 \) and \( \text{zero2} = 8 \), we form the factors by inserting these values into the expressions \( (x - \text{zero1}) \) and \( (x - \text{zero2}) \).
- Therefore, the factors of the quadratic function are:
[tex]\[ (x - 3) \quad \text{and} \quad (x - 8) \][/tex]
4. Verifying the Options:
- Now, we match these factors with the given answer choices.
- A. \( (x + 8) \ \text{and} \ (x - 3) \)
- B. \( (x - 8) \ \text{and} \ (x + 3) \)
- C. \( (x + 8) \ \text{and} \ (x + 3) \)
- D. \( (x - 8) \ \text{and} \ (x - 3) \)
5. Correct Answer:
- From our formulation, the correct factors \((x - 3)\) and \((x - 8)\) correspond to option D: \((x - 8)\) and \((x - 3)\).
Hence, the correct answer is:
[tex]\[ \boxed{D. (x-8) \ \text{and} \ (x-3)} \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.