Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine the factors of the quadratic function given its zeros, let's go through the concept step-by-step.
1. Understanding Zeros of a Quadratic Function:
- A quadratic function \( f(x) \) can be expressed in the factored form as \( f(x) = a(x - \text{zero1})(x - \text{zero2}) \), where \( \text{zero1} \) and \( \text{zero2} \) are the zeros (or roots) of the function.
2. Given Zeros:
- In the problem, the zeros of the quadratic function are \( 3 \) and \( 8 \).
3. Formulating the Factors:
- Using the zeros \( \text{zero1} = 3 \) and \( \text{zero2} = 8 \), we form the factors by inserting these values into the expressions \( (x - \text{zero1}) \) and \( (x - \text{zero2}) \).
- Therefore, the factors of the quadratic function are:
[tex]\[ (x - 3) \quad \text{and} \quad (x - 8) \][/tex]
4. Verifying the Options:
- Now, we match these factors with the given answer choices.
- A. \( (x + 8) \ \text{and} \ (x - 3) \)
- B. \( (x - 8) \ \text{and} \ (x + 3) \)
- C. \( (x + 8) \ \text{and} \ (x + 3) \)
- D. \( (x - 8) \ \text{and} \ (x - 3) \)
5. Correct Answer:
- From our formulation, the correct factors \((x - 3)\) and \((x - 8)\) correspond to option D: \((x - 8)\) and \((x - 3)\).
Hence, the correct answer is:
[tex]\[ \boxed{D. (x-8) \ \text{and} \ (x-3)} \][/tex]
1. Understanding Zeros of a Quadratic Function:
- A quadratic function \( f(x) \) can be expressed in the factored form as \( f(x) = a(x - \text{zero1})(x - \text{zero2}) \), where \( \text{zero1} \) and \( \text{zero2} \) are the zeros (or roots) of the function.
2. Given Zeros:
- In the problem, the zeros of the quadratic function are \( 3 \) and \( 8 \).
3. Formulating the Factors:
- Using the zeros \( \text{zero1} = 3 \) and \( \text{zero2} = 8 \), we form the factors by inserting these values into the expressions \( (x - \text{zero1}) \) and \( (x - \text{zero2}) \).
- Therefore, the factors of the quadratic function are:
[tex]\[ (x - 3) \quad \text{and} \quad (x - 8) \][/tex]
4. Verifying the Options:
- Now, we match these factors with the given answer choices.
- A. \( (x + 8) \ \text{and} \ (x - 3) \)
- B. \( (x - 8) \ \text{and} \ (x + 3) \)
- C. \( (x + 8) \ \text{and} \ (x + 3) \)
- D. \( (x - 8) \ \text{and} \ (x - 3) \)
5. Correct Answer:
- From our formulation, the correct factors \((x - 3)\) and \((x - 8)\) correspond to option D: \((x - 8)\) and \((x - 3)\).
Hence, the correct answer is:
[tex]\[ \boxed{D. (x-8) \ \text{and} \ (x-3)} \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.