Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To show that the equation \( 4 \sin(A) \cos^3(A) - 4 \cos(A) \sin^3(A) = \sin(4A) \) holds true, let's go through the following trigonometric identities and steps.
1. Double Angle Identities:
[tex]\[ \sin(2A) = 2 \sin(A) \cos(A) \][/tex]
[tex]\[ \cos(2A) = \cos^2(A) - \sin^2(A) \][/tex]
2. Expressing \(\sin(4A)\):
We know:
[tex]\[ \sin(4A) = 2 \sin(2A) \cos(2A) \][/tex]
Since \(\sin(2A) = 2 \sin(A) \cos(A)\) and \(\cos(2A) = \cos^2(A) - \sin^2(A)\), substitute these into the equation:
[tex]\[ \sin(4A) = 2 \left(2 \sin(A) \cos(A)\right) \left(\cos^2(A) - \sin^2(A)\right) \][/tex]
Simplify this:
[tex]\[ \sin(4A) = 4 \sin(A) \cos(A) \left(\cos^2(A) - \sin^2(A)\right) \][/tex]
3. Simplifying Further:
Let's expand the terms:
[tex]\[ \sin(4A) = 4 \sin(A) \left(\cos^3(A) - \cos(A) \sin^2(A)\right) \][/tex]
Distribute \(\sin(A)\):
[tex]\[ \sin(4A) = 4 \sin(A) \cos^3(A) - 4 \sin(A) \cos(A) \sin^2(A) \][/tex]
[tex]\[ \sin(4A) = 4 \sin(A) \cos^3(A) - 4 \cos(A) \sin^3(A) \][/tex]
Hence, we have shown that:
[tex]\[ 4 \sin(A) \cos^3(A) - 4 \cos(A) \sin^3(A) = \sin(4A) \][/tex]
Thus, the equation [tex]\( 4 \sin(A) \cos^3(A) - 4 \cos(A) \sin^3(A) = \sin(4A) \)[/tex] holds true.
1. Double Angle Identities:
[tex]\[ \sin(2A) = 2 \sin(A) \cos(A) \][/tex]
[tex]\[ \cos(2A) = \cos^2(A) - \sin^2(A) \][/tex]
2. Expressing \(\sin(4A)\):
We know:
[tex]\[ \sin(4A) = 2 \sin(2A) \cos(2A) \][/tex]
Since \(\sin(2A) = 2 \sin(A) \cos(A)\) and \(\cos(2A) = \cos^2(A) - \sin^2(A)\), substitute these into the equation:
[tex]\[ \sin(4A) = 2 \left(2 \sin(A) \cos(A)\right) \left(\cos^2(A) - \sin^2(A)\right) \][/tex]
Simplify this:
[tex]\[ \sin(4A) = 4 \sin(A) \cos(A) \left(\cos^2(A) - \sin^2(A)\right) \][/tex]
3. Simplifying Further:
Let's expand the terms:
[tex]\[ \sin(4A) = 4 \sin(A) \left(\cos^3(A) - \cos(A) \sin^2(A)\right) \][/tex]
Distribute \(\sin(A)\):
[tex]\[ \sin(4A) = 4 \sin(A) \cos^3(A) - 4 \sin(A) \cos(A) \sin^2(A) \][/tex]
[tex]\[ \sin(4A) = 4 \sin(A) \cos^3(A) - 4 \cos(A) \sin^3(A) \][/tex]
Hence, we have shown that:
[tex]\[ 4 \sin(A) \cos^3(A) - 4 \cos(A) \sin^3(A) = \sin(4A) \][/tex]
Thus, the equation [tex]\( 4 \sin(A) \cos^3(A) - 4 \cos(A) \sin^3(A) = \sin(4A) \)[/tex] holds true.
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.