Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To complete the square for the given quadratic expression \( x^2 + 12x + 44 \), let's follow these steps:
1. Start with the original quadratic expression:
[tex]\[ x^2 + 12x + 44 \][/tex]
2. Isolate the quadratic and linear terms:
[tex]\[ x^2 + 12x \][/tex]
3. To complete the square, take the coefficient of \( x \), which is 12, divide it by 2, and then square the result:
[tex]\[ \left(\frac{12}{2}\right)^2 = 6^2 = 36 \][/tex]
4. Add and subtract this squared value (36) inside the expression:
[tex]\[ x^2 + 12x + 36 - 36 + 44 \][/tex]
5. Group the perfect square trinomial and the constants separately:
[tex]\[ (x^2 + 12x + 36) + (-36 + 44) \][/tex]
6. Rewrite the perfect square trinomial as a binomial square:
[tex]\[ (x + 6)^2 + (-36 + 44) \][/tex]
7. Simplify the constants:
[tex]\[ -36 + 44 = 8 \][/tex]
8. So, the completed square form of the quadratic expression is:
[tex]\[ x^2 + 12x + 44 = (x + 6)^2 + 8 \][/tex]
Thus, filling in the gap in the equation, we have:
[tex]\[ x^2 + 12x + 44 = (x + 6)^2 + 8 \][/tex]
The value that completes the square is [tex]\( \boxed{8} \)[/tex].
1. Start with the original quadratic expression:
[tex]\[ x^2 + 12x + 44 \][/tex]
2. Isolate the quadratic and linear terms:
[tex]\[ x^2 + 12x \][/tex]
3. To complete the square, take the coefficient of \( x \), which is 12, divide it by 2, and then square the result:
[tex]\[ \left(\frac{12}{2}\right)^2 = 6^2 = 36 \][/tex]
4. Add and subtract this squared value (36) inside the expression:
[tex]\[ x^2 + 12x + 36 - 36 + 44 \][/tex]
5. Group the perfect square trinomial and the constants separately:
[tex]\[ (x^2 + 12x + 36) + (-36 + 44) \][/tex]
6. Rewrite the perfect square trinomial as a binomial square:
[tex]\[ (x + 6)^2 + (-36 + 44) \][/tex]
7. Simplify the constants:
[tex]\[ -36 + 44 = 8 \][/tex]
8. So, the completed square form of the quadratic expression is:
[tex]\[ x^2 + 12x + 44 = (x + 6)^2 + 8 \][/tex]
Thus, filling in the gap in the equation, we have:
[tex]\[ x^2 + 12x + 44 = (x + 6)^2 + 8 \][/tex]
The value that completes the square is [tex]\( \boxed{8} \)[/tex].
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.