Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To find the inverse of the function \( f(x) = \frac{1}{x^6} \) with \( x > 0 \), we can follow these steps:
### Finding the Inverse Function \( f^{-1}(x) \)
1. Express \( y \) in terms of \( x \):
Given \( y = f(x) = \frac{1}{x^6} \).
2. Swap \( x \) and \( y \):
To find the inverse, we interchange \( x \) and \( y \) to obtain:
[tex]\[ x = \frac{1}{y^6} \][/tex]
3. Solve for \( y \):
Isolate \( y \) by solving:
[tex]\[ y^6 = \frac{1}{x} \][/tex]
Take the sixth root of both sides:
[tex]\[ y = \left( \frac{1}{x} \right)^{\frac{1}{6}} = x^{-\frac{1}{6}} \][/tex]
Thus, the inverse function is:
[tex]\[ f^{-1}(x) = x^{-\frac{1}{6}} \][/tex]
### Domain and Range of \( f^{-1}(x) \)
For the inverse function \( f^{-1}(x) = x^{-\frac{1}{6}} \):
- Domain: The domain of \( f^{-1}(x) \) corresponds to the range of the original function \( f(x) \). Since \( f(x) = \frac{1}{x^6} \) for \( x > 0 \), \( f(x) \) is always positive. Therefore, the domain of \( f^{-1}(x) \) is \( x > 0 \).
- Range: The range of \( f^{-1}(x) \) corresponds to the domain of the original function \( f(x) \). Since the domain of \( f(x) \) is \( x > 0 \), the range of \( f^{-1}(x) \) is also \( y > 0 \).
### Verification of the Inverse Function
To verify that \( f^{-1}(x) \) is indeed the inverse of \( f(x) \), we must show that:
1. \( f(f^{-1}(x)) = x \)
2. \( f^{-1}(f(x)) = x \)
#### 1. Verifying \( f(f^{-1}(x)) = x \):
[tex]\[ f(f^{-1}(x)) = f(x^{-\frac{1}{6}}) = \frac{1}{(x^{-\frac{1}{6}})^6} \][/tex]
Since:
[tex]\[ (x^{-\frac{1}{6}})^6 = x^{-1} *6 = x^{-6/6} = x^{-1} = x^{1} \][/tex]
Thus:
[tex]\[ f(f^{-1}(x)) = \frac{1}{x^{1}} = x \][/tex]
#### 2. Verifying \( f^{-1}(f(x)) = x \):
[tex]\[ f^{-1}(f(x)) = f^{-1}\left( \frac{1}{x^6} \right) = \left( \frac{1}{x^6} \right)^{-\frac{1}{6}} \][/tex]
Which simplifies to:
[tex]\[ \left( \frac{1}{x^6} \right)^{-\frac{1}{6}} = (x^{-6})^{-\frac{1}{6}} = x \][/tex]
Both conditions \( f(f^{-1}(x)) = x \) and \( f^{-1}(f(x)) = x \) are satisfied, confirming that the inverse function is correct.
### Summary
- The inverse function is \( f^{-1}(x) = x^{-\frac{1}{6}} \).
- The domain of \( f^{-1}(x) \) is \( x > 0 \).
- The range of \( f^{-1}(x) \) is \( y > 0 \).
Thus, the solution to the problem is:
[tex]\[ f^{-1}(x) = x^{-\frac{1}{6}}, \quad \text{with domain:} \, x > 0, \quad \text{and range:} \, y > 0. \][/tex]
### Finding the Inverse Function \( f^{-1}(x) \)
1. Express \( y \) in terms of \( x \):
Given \( y = f(x) = \frac{1}{x^6} \).
2. Swap \( x \) and \( y \):
To find the inverse, we interchange \( x \) and \( y \) to obtain:
[tex]\[ x = \frac{1}{y^6} \][/tex]
3. Solve for \( y \):
Isolate \( y \) by solving:
[tex]\[ y^6 = \frac{1}{x} \][/tex]
Take the sixth root of both sides:
[tex]\[ y = \left( \frac{1}{x} \right)^{\frac{1}{6}} = x^{-\frac{1}{6}} \][/tex]
Thus, the inverse function is:
[tex]\[ f^{-1}(x) = x^{-\frac{1}{6}} \][/tex]
### Domain and Range of \( f^{-1}(x) \)
For the inverse function \( f^{-1}(x) = x^{-\frac{1}{6}} \):
- Domain: The domain of \( f^{-1}(x) \) corresponds to the range of the original function \( f(x) \). Since \( f(x) = \frac{1}{x^6} \) for \( x > 0 \), \( f(x) \) is always positive. Therefore, the domain of \( f^{-1}(x) \) is \( x > 0 \).
- Range: The range of \( f^{-1}(x) \) corresponds to the domain of the original function \( f(x) \). Since the domain of \( f(x) \) is \( x > 0 \), the range of \( f^{-1}(x) \) is also \( y > 0 \).
### Verification of the Inverse Function
To verify that \( f^{-1}(x) \) is indeed the inverse of \( f(x) \), we must show that:
1. \( f(f^{-1}(x)) = x \)
2. \( f^{-1}(f(x)) = x \)
#### 1. Verifying \( f(f^{-1}(x)) = x \):
[tex]\[ f(f^{-1}(x)) = f(x^{-\frac{1}{6}}) = \frac{1}{(x^{-\frac{1}{6}})^6} \][/tex]
Since:
[tex]\[ (x^{-\frac{1}{6}})^6 = x^{-1} *6 = x^{-6/6} = x^{-1} = x^{1} \][/tex]
Thus:
[tex]\[ f(f^{-1}(x)) = \frac{1}{x^{1}} = x \][/tex]
#### 2. Verifying \( f^{-1}(f(x)) = x \):
[tex]\[ f^{-1}(f(x)) = f^{-1}\left( \frac{1}{x^6} \right) = \left( \frac{1}{x^6} \right)^{-\frac{1}{6}} \][/tex]
Which simplifies to:
[tex]\[ \left( \frac{1}{x^6} \right)^{-\frac{1}{6}} = (x^{-6})^{-\frac{1}{6}} = x \][/tex]
Both conditions \( f(f^{-1}(x)) = x \) and \( f^{-1}(f(x)) = x \) are satisfied, confirming that the inverse function is correct.
### Summary
- The inverse function is \( f^{-1}(x) = x^{-\frac{1}{6}} \).
- The domain of \( f^{-1}(x) \) is \( x > 0 \).
- The range of \( f^{-1}(x) \) is \( y > 0 \).
Thus, the solution to the problem is:
[tex]\[ f^{-1}(x) = x^{-\frac{1}{6}}, \quad \text{with domain:} \, x > 0, \quad \text{and range:} \, y > 0. \][/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.