Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine whether Kavita should accept or reject the null hypothesis \( H_0 \) that the average receipt for the branch is [tex]$72.00$[/tex], we need to perform a hypothesis test using the following steps:
1. State the Hypotheses:
- Null Hypothesis (\( H_0 \)): \( \mu = 72 \)
- Alternative Hypothesis (\( H_a \)): \( \mu < 72 \)
2. Set the Significance Level:
- Given the critical z-value for a 5% significance level (lower-tail test) is \( -1.65 \).
3. Calculate the Test Statistic:
- Given:
- Chain average (\( \mu \)): 72.00
- Chain standard deviation (\( \sigma \)): 11.00
- Branch average (\( \bar{x} \)): 67.00
- Sample size (\( n \)): 40
- Calculate the standard error (\( SE \)):
[tex]\[ SE = \frac{\sigma}{\sqrt{n}} = \frac{11.00}{\sqrt{40}} \approx 1.74 \][/tex]
- Calculate the z-statistic:
[tex]\[ z = \frac{\bar{x} - \mu}{SE} = \frac{67.00 - 72.00}{1.74} \approx -2.875 \][/tex]
4. Compare the Test Statistic to the Critical Value:
- The calculated z-statistic is \( -2.875 \).
- The critical value for a 5% significance level is \( -1.65 \).
5. Decision:
- Since \( -2.875 \) is less than \( -1.65 \), we reject the null hypothesis \( H_0 \).
Therefore, Kavita should reject \( H_0: \mu = 72 \) and accept \( H_a: \mu < 72 \). This means that the average customer receipt for the branch is significantly below the chain's average.
The correct choice is:
- She should reject [tex]\( H_0: \mu = 72 \)[/tex] and accept [tex]\( H_a: \mu < 72 \)[/tex].
1. State the Hypotheses:
- Null Hypothesis (\( H_0 \)): \( \mu = 72 \)
- Alternative Hypothesis (\( H_a \)): \( \mu < 72 \)
2. Set the Significance Level:
- Given the critical z-value for a 5% significance level (lower-tail test) is \( -1.65 \).
3. Calculate the Test Statistic:
- Given:
- Chain average (\( \mu \)): 72.00
- Chain standard deviation (\( \sigma \)): 11.00
- Branch average (\( \bar{x} \)): 67.00
- Sample size (\( n \)): 40
- Calculate the standard error (\( SE \)):
[tex]\[ SE = \frac{\sigma}{\sqrt{n}} = \frac{11.00}{\sqrt{40}} \approx 1.74 \][/tex]
- Calculate the z-statistic:
[tex]\[ z = \frac{\bar{x} - \mu}{SE} = \frac{67.00 - 72.00}{1.74} \approx -2.875 \][/tex]
4. Compare the Test Statistic to the Critical Value:
- The calculated z-statistic is \( -2.875 \).
- The critical value for a 5% significance level is \( -1.65 \).
5. Decision:
- Since \( -2.875 \) is less than \( -1.65 \), we reject the null hypothesis \( H_0 \).
Therefore, Kavita should reject \( H_0: \mu = 72 \) and accept \( H_a: \mu < 72 \). This means that the average customer receipt for the branch is significantly below the chain's average.
The correct choice is:
- She should reject [tex]\( H_0: \mu = 72 \)[/tex] and accept [tex]\( H_a: \mu < 72 \)[/tex].
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.