Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine which set of ordered pairs represents a function, we need to check if each \( x \)-value in the set is associated with exactly one \( y \)-value. In other words, for each unique \( x \)-value, there should be only one corresponding \( y \)-value.
Let's examine each set of ordered pairs:
1. \(\{(2,-2),(1,5),(-2,2),(1,-3),(8,-1)\}\):
- The \( x \)-values are: \( \{2, 1, -2, 1, 8\} \)
- The \( x \)-value 1 appears twice, associated with different \( y \)-values (5 and -3). Thus, this set does not represent a function.
2. \(\{(3,-1),(7,1),(-6,-1),(9,1),(2,-1)\}\):
- The \( x \)-values are: \( \{3, 7, -6, 9, 2\} \)
- All \( x \)-values are unique. This means each \( x \)-value is associated with exactly one \( y \)-value. Therefore, this set represents a function.
3. \(\{(6,8),(5,2),(-2,-5),(1,-3),(-2,9)\}\):
- The \( x \)-values are: \( \{6, 5, -2, 1, -2\} \)
- The \( x \)-value -2 appears twice, associated with different \( y \)-values (-5 and 9). Thus, this set does not represent a function.
4. \(\{(-3,1),(6,3),(-3,2),(-3,-3),(1,-1)\}\):
- The \( x \)-values are: \( \{ -3, 6, -3, -3, 1 \} \)
- The \( x \)-value -3 appears three times, associated with different \( y \)-values (1, 2, and -3). Thus, this set does not represent a function.
Based on this analysis, the set of ordered pairs that represents a function is:
[tex]\[ \{(3,-1),(7,1),(-6,-1),(9,1),(2,-1)\} \][/tex]
Let's examine each set of ordered pairs:
1. \(\{(2,-2),(1,5),(-2,2),(1,-3),(8,-1)\}\):
- The \( x \)-values are: \( \{2, 1, -2, 1, 8\} \)
- The \( x \)-value 1 appears twice, associated with different \( y \)-values (5 and -3). Thus, this set does not represent a function.
2. \(\{(3,-1),(7,1),(-6,-1),(9,1),(2,-1)\}\):
- The \( x \)-values are: \( \{3, 7, -6, 9, 2\} \)
- All \( x \)-values are unique. This means each \( x \)-value is associated with exactly one \( y \)-value. Therefore, this set represents a function.
3. \(\{(6,8),(5,2),(-2,-5),(1,-3),(-2,9)\}\):
- The \( x \)-values are: \( \{6, 5, -2, 1, -2\} \)
- The \( x \)-value -2 appears twice, associated with different \( y \)-values (-5 and 9). Thus, this set does not represent a function.
4. \(\{(-3,1),(6,3),(-3,2),(-3,-3),(1,-1)\}\):
- The \( x \)-values are: \( \{ -3, 6, -3, -3, 1 \} \)
- The \( x \)-value -3 appears three times, associated with different \( y \)-values (1, 2, and -3). Thus, this set does not represent a function.
Based on this analysis, the set of ordered pairs that represents a function is:
[tex]\[ \{(3,-1),(7,1),(-6,-1),(9,1),(2,-1)\} \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.