Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Certainly! Let's expand the expression \(\left( x + \frac{1}{x} \right)^3\) step-by-step.
### Step-by-Step Solution
To expand the expression \(\left( x + \frac{1}{x} \right)^3\), we use the binomial theorem, which states:
[tex]\[ (a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \][/tex]
In this case, \(a = x\), \(b = \frac{1}{x}\), and \(n = 3\). This results in:
[tex]\[ \left( x + \frac{1}{x} \right)^3 = \sum_{k=0}^{3} \binom{3}{k} x^{3-k} \left( \frac{1}{x} \right)^k \][/tex]
### Calculating Each Term
For \(k = 0\):
[tex]\[ \binom{3}{0} x^{3-0} \left( \frac{1}{x} \right)^0 = 1 \cdot x^3 \cdot 1 = x^3 \][/tex]
For \(k = 1\):
[tex]\[ \binom{3}{1} x^{3-1} \left( \frac{1}{x} \right)^1 = 3 \cdot x^2 \cdot \frac{1}{x} = 3x \][/tex]
For \(k = 2\):
[tex]\[ \binom{3}{2} x^{3-2} \left( \frac{1}{x} \right)^2 = 3 \cdot x \cdot \frac{1}{x^2} = \frac{3}{x} \][/tex]
For \(k = 3\):
[tex]\[ \binom{3}{3} x^{3-3} \left( \frac{1}{x} \right)^3 = 1 \cdot 1 \cdot \frac{1}{x^3} = \frac{1}{x^3} \][/tex]
### Combining All Terms
Now we combine all these terms together:
[tex]\[ \left( x + \frac{1}{x} \right)^3 = x^3 + 3x + \frac{3}{x} + \frac{1}{x^3} \][/tex]
Expressing \(\frac{1}{x}\) and \(\frac{1}{x^3}\) with negative exponents for consistency:
[tex]\[ \left( x + \frac{1}{x} \right)^3 = x^3 + 3x + 3x^{-1} + x^{-3} \][/tex]
So, the expanded form of \(\left( x + \frac{1}{x} \right)^3\) is:
[tex]\[ \boxed{x^3 + 3x + \frac{3}{x} + \frac{1}{x^3}} \][/tex]
### Step-by-Step Solution
To expand the expression \(\left( x + \frac{1}{x} \right)^3\), we use the binomial theorem, which states:
[tex]\[ (a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \][/tex]
In this case, \(a = x\), \(b = \frac{1}{x}\), and \(n = 3\). This results in:
[tex]\[ \left( x + \frac{1}{x} \right)^3 = \sum_{k=0}^{3} \binom{3}{k} x^{3-k} \left( \frac{1}{x} \right)^k \][/tex]
### Calculating Each Term
For \(k = 0\):
[tex]\[ \binom{3}{0} x^{3-0} \left( \frac{1}{x} \right)^0 = 1 \cdot x^3 \cdot 1 = x^3 \][/tex]
For \(k = 1\):
[tex]\[ \binom{3}{1} x^{3-1} \left( \frac{1}{x} \right)^1 = 3 \cdot x^2 \cdot \frac{1}{x} = 3x \][/tex]
For \(k = 2\):
[tex]\[ \binom{3}{2} x^{3-2} \left( \frac{1}{x} \right)^2 = 3 \cdot x \cdot \frac{1}{x^2} = \frac{3}{x} \][/tex]
For \(k = 3\):
[tex]\[ \binom{3}{3} x^{3-3} \left( \frac{1}{x} \right)^3 = 1 \cdot 1 \cdot \frac{1}{x^3} = \frac{1}{x^3} \][/tex]
### Combining All Terms
Now we combine all these terms together:
[tex]\[ \left( x + \frac{1}{x} \right)^3 = x^3 + 3x + \frac{3}{x} + \frac{1}{x^3} \][/tex]
Expressing \(\frac{1}{x}\) and \(\frac{1}{x^3}\) with negative exponents for consistency:
[tex]\[ \left( x + \frac{1}{x} \right)^3 = x^3 + 3x + 3x^{-1} + x^{-3} \][/tex]
So, the expanded form of \(\left( x + \frac{1}{x} \right)^3\) is:
[tex]\[ \boxed{x^3 + 3x + \frac{3}{x} + \frac{1}{x^3}} \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.