At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Certainly! Let's expand the expression \(\left( x + \frac{1}{x} \right)^3\) step-by-step.
### Step-by-Step Solution
To expand the expression \(\left( x + \frac{1}{x} \right)^3\), we use the binomial theorem, which states:
[tex]\[ (a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \][/tex]
In this case, \(a = x\), \(b = \frac{1}{x}\), and \(n = 3\). This results in:
[tex]\[ \left( x + \frac{1}{x} \right)^3 = \sum_{k=0}^{3} \binom{3}{k} x^{3-k} \left( \frac{1}{x} \right)^k \][/tex]
### Calculating Each Term
For \(k = 0\):
[tex]\[ \binom{3}{0} x^{3-0} \left( \frac{1}{x} \right)^0 = 1 \cdot x^3 \cdot 1 = x^3 \][/tex]
For \(k = 1\):
[tex]\[ \binom{3}{1} x^{3-1} \left( \frac{1}{x} \right)^1 = 3 \cdot x^2 \cdot \frac{1}{x} = 3x \][/tex]
For \(k = 2\):
[tex]\[ \binom{3}{2} x^{3-2} \left( \frac{1}{x} \right)^2 = 3 \cdot x \cdot \frac{1}{x^2} = \frac{3}{x} \][/tex]
For \(k = 3\):
[tex]\[ \binom{3}{3} x^{3-3} \left( \frac{1}{x} \right)^3 = 1 \cdot 1 \cdot \frac{1}{x^3} = \frac{1}{x^3} \][/tex]
### Combining All Terms
Now we combine all these terms together:
[tex]\[ \left( x + \frac{1}{x} \right)^3 = x^3 + 3x + \frac{3}{x} + \frac{1}{x^3} \][/tex]
Expressing \(\frac{1}{x}\) and \(\frac{1}{x^3}\) with negative exponents for consistency:
[tex]\[ \left( x + \frac{1}{x} \right)^3 = x^3 + 3x + 3x^{-1} + x^{-3} \][/tex]
So, the expanded form of \(\left( x + \frac{1}{x} \right)^3\) is:
[tex]\[ \boxed{x^3 + 3x + \frac{3}{x} + \frac{1}{x^3}} \][/tex]
### Step-by-Step Solution
To expand the expression \(\left( x + \frac{1}{x} \right)^3\), we use the binomial theorem, which states:
[tex]\[ (a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \][/tex]
In this case, \(a = x\), \(b = \frac{1}{x}\), and \(n = 3\). This results in:
[tex]\[ \left( x + \frac{1}{x} \right)^3 = \sum_{k=0}^{3} \binom{3}{k} x^{3-k} \left( \frac{1}{x} \right)^k \][/tex]
### Calculating Each Term
For \(k = 0\):
[tex]\[ \binom{3}{0} x^{3-0} \left( \frac{1}{x} \right)^0 = 1 \cdot x^3 \cdot 1 = x^3 \][/tex]
For \(k = 1\):
[tex]\[ \binom{3}{1} x^{3-1} \left( \frac{1}{x} \right)^1 = 3 \cdot x^2 \cdot \frac{1}{x} = 3x \][/tex]
For \(k = 2\):
[tex]\[ \binom{3}{2} x^{3-2} \left( \frac{1}{x} \right)^2 = 3 \cdot x \cdot \frac{1}{x^2} = \frac{3}{x} \][/tex]
For \(k = 3\):
[tex]\[ \binom{3}{3} x^{3-3} \left( \frac{1}{x} \right)^3 = 1 \cdot 1 \cdot \frac{1}{x^3} = \frac{1}{x^3} \][/tex]
### Combining All Terms
Now we combine all these terms together:
[tex]\[ \left( x + \frac{1}{x} \right)^3 = x^3 + 3x + \frac{3}{x} + \frac{1}{x^3} \][/tex]
Expressing \(\frac{1}{x}\) and \(\frac{1}{x^3}\) with negative exponents for consistency:
[tex]\[ \left( x + \frac{1}{x} \right)^3 = x^3 + 3x + 3x^{-1} + x^{-3} \][/tex]
So, the expanded form of \(\left( x + \frac{1}{x} \right)^3\) is:
[tex]\[ \boxed{x^3 + 3x + \frac{3}{x} + \frac{1}{x^3}} \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.