Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To solve the quadratic equation \( v^2 + 8v - 3 = 0 \) by completing the square, follow these steps:
1. Rearrange the Equation:
Start with the quadratic equation:
[tex]\[ v^2 + 8v - 3 = 0 \][/tex]
Move the constant term to the right side of the equation:
[tex]\[ v^2 + 8v = 3 \][/tex]
2. Complete the Square:
To complete the square, we need to form a perfect square trinomial on the left side. Take the coefficient of \( v \), divide it by 2, and square the result:
[tex]\[ \left(\frac{8}{2}\right)^2 = 4^2 = 16 \][/tex]
Add and subtract this value inside the equation to maintain equality:
[tex]\[ v^2 + 8v + 16 - 16 = 3 \][/tex]
Simplify to group the perfect square trinomial on the left:
[tex]\[ (v + 4)^2 - 16 = 3 \][/tex]
Now, isolate the perfect square trinomial:
[tex]\[ (v + 4)^2 = 3 + 16 \][/tex]
[tex]\[ (v + 4)^2 = 19 \][/tex]
3. Solve for \( v \):
Take the square root of both sides:
[tex]\[ v + 4 = \pm \sqrt{19} \][/tex]
Solve for \( v \) by isolating it on one side of the equation:
[tex]\[ v = -4 \pm \sqrt{19} \][/tex]
Thus, the solutions to the equation \( v^2 + 8v - 3 = 0 \) are in the form:
[tex]\[ v = a \pm \sqrt{b} \][/tex]
where \( a = -4 \) and \( b = 19 \).
Therefore, the solutions are:
[tex]\[ v = -4 \pm \sqrt{19} \][/tex]
1. Rearrange the Equation:
Start with the quadratic equation:
[tex]\[ v^2 + 8v - 3 = 0 \][/tex]
Move the constant term to the right side of the equation:
[tex]\[ v^2 + 8v = 3 \][/tex]
2. Complete the Square:
To complete the square, we need to form a perfect square trinomial on the left side. Take the coefficient of \( v \), divide it by 2, and square the result:
[tex]\[ \left(\frac{8}{2}\right)^2 = 4^2 = 16 \][/tex]
Add and subtract this value inside the equation to maintain equality:
[tex]\[ v^2 + 8v + 16 - 16 = 3 \][/tex]
Simplify to group the perfect square trinomial on the left:
[tex]\[ (v + 4)^2 - 16 = 3 \][/tex]
Now, isolate the perfect square trinomial:
[tex]\[ (v + 4)^2 = 3 + 16 \][/tex]
[tex]\[ (v + 4)^2 = 19 \][/tex]
3. Solve for \( v \):
Take the square root of both sides:
[tex]\[ v + 4 = \pm \sqrt{19} \][/tex]
Solve for \( v \) by isolating it on one side of the equation:
[tex]\[ v = -4 \pm \sqrt{19} \][/tex]
Thus, the solutions to the equation \( v^2 + 8v - 3 = 0 \) are in the form:
[tex]\[ v = a \pm \sqrt{b} \][/tex]
where \( a = -4 \) and \( b = 19 \).
Therefore, the solutions are:
[tex]\[ v = -4 \pm \sqrt{19} \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.