Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine which of the given equations have exactly one solution, let’s analyze each equation step-by-step:
### Equation A: \( 2x - 31 = 2x - 31 \)
1. Subtract \( 2x \) from both sides:
[tex]\[ 2x - 2x - 31 = 2x - 2x - 31 \][/tex]
2. Simplify:
[tex]\[ -31 = -31 \][/tex]
This is a true statement, meaning the equation holds for all values of \( x \). Hence, it has infinitely many solutions.
### Equation B: \( 2x - 31 = -2x - 31 \)
1. Add \( 2x \) to both sides:
[tex]\[ 2x + 2x - 31 = -31 \][/tex]
2. Simplify:
[tex]\[ 4x - 31 = -31 \][/tex]
3. Add 31 to both sides:
[tex]\[ 4x - 31 + 31 = -31 + 31 \][/tex]
4. Simplify:
[tex]\[ 4x = 0 \][/tex]
5. Divide by 4:
[tex]\[ x = 0 \][/tex]
This equation has exactly one solution, \( x = 0 \).
### Equation C: \( 2x + 31 = 2x - 31 \)
1. Subtract \( 2x \) from both sides:
[tex]\[ 2x - 2x + 31 = 2x - 2x - 31 \][/tex]
2. Simplify:
[tex]\[ 31 = -31 \][/tex]
This is a false statement, meaning the equation has no solutions.
### Equation D: \( 2x - 2 = 2x - 31 \)
1. Subtract \( 2x \) from both sides:
[tex]\[ 2x - 2x - 2 = 2x - 2x - 31 \][/tex]
2. Simplify:
[tex]\[ -2 = -31 \][/tex]
This is a false statement, meaning the equation has no solutions.
From this analysis, the equation that has exactly one solution is:
[tex]\[ \text{Equation B: } 2x - 31 = -2x - 31 \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{2} \][/tex]
### Equation A: \( 2x - 31 = 2x - 31 \)
1. Subtract \( 2x \) from both sides:
[tex]\[ 2x - 2x - 31 = 2x - 2x - 31 \][/tex]
2. Simplify:
[tex]\[ -31 = -31 \][/tex]
This is a true statement, meaning the equation holds for all values of \( x \). Hence, it has infinitely many solutions.
### Equation B: \( 2x - 31 = -2x - 31 \)
1. Add \( 2x \) to both sides:
[tex]\[ 2x + 2x - 31 = -31 \][/tex]
2. Simplify:
[tex]\[ 4x - 31 = -31 \][/tex]
3. Add 31 to both sides:
[tex]\[ 4x - 31 + 31 = -31 + 31 \][/tex]
4. Simplify:
[tex]\[ 4x = 0 \][/tex]
5. Divide by 4:
[tex]\[ x = 0 \][/tex]
This equation has exactly one solution, \( x = 0 \).
### Equation C: \( 2x + 31 = 2x - 31 \)
1. Subtract \( 2x \) from both sides:
[tex]\[ 2x - 2x + 31 = 2x - 2x - 31 \][/tex]
2. Simplify:
[tex]\[ 31 = -31 \][/tex]
This is a false statement, meaning the equation has no solutions.
### Equation D: \( 2x - 2 = 2x - 31 \)
1. Subtract \( 2x \) from both sides:
[tex]\[ 2x - 2x - 2 = 2x - 2x - 31 \][/tex]
2. Simplify:
[tex]\[ -2 = -31 \][/tex]
This is a false statement, meaning the equation has no solutions.
From this analysis, the equation that has exactly one solution is:
[tex]\[ \text{Equation B: } 2x - 31 = -2x - 31 \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{2} \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.