Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine which polynomial is in standard form, we must inspect each polynomial and ensure that the terms are arranged in descending order of their degrees.
### Polynomial 1:
[tex]\[ 3xy + 6x^3y^2 - 4x^4y^3 + 19x^7y^4 \][/tex]
Let’s calculate the degrees of each term:
- \( 3xy \) has a degree of \( 1 + 1 = 2 \)
- \( 6x^3y^2 \) has a degree of \( 3 + 2 = 5 \)
- \( -4x^4y^3 \) has a degree of \( 4 + 3 = 7 \)
- \( 19x^7y^4 \) has a degree of \( 7 + 4 = 11 \)
When arranged in descending order of their degrees:
[tex]\[ 19x^7y^4 \rightarrow 11 \][/tex]
[tex]\[ -4x^4y^3 \rightarrow 7 \][/tex]
[tex]\[ 6x^3y^2 \rightarrow 5 \][/tex]
[tex]\[ 3xy \rightarrow 2 \][/tex]
Thus, polynomial 1 is in standard form.
### Polynomial 2:
[tex]\[ 18x^5 - 7x^2y - 2xy^2 + 17y^4 \][/tex]
Let’s calculate the degrees of each term:
- \( 18x^5 \) has a degree of \( 5 \)
- \( -7x^2y \) has a degree of \( 2 + 1 = 3 \)
- \( -2xy^2 \) has a degree of \( 1 + 2 = 3 \)
- \( 17y^4 \) has a degree of \( 4 \)
When arranged in descending order of their degrees:
[tex]\[ 18x^5 \rightarrow 5 \][/tex]
[tex]\[ 17y^4 \rightarrow 4 \][/tex]
[tex]\[ -7x^2y \rightarrow 3 \][/tex]
[tex]\[ -2xy^2 \rightarrow 3 \][/tex]
This polynomial is not in perfect descending order because terms with equal degrees should be grouped together; however, it is considered in descending order by their degrees.
### Polynomial 3:
[tex]\[ x^5y^5 - 3xy - 11x^2y^2 + 12 \][/tex]
Let’s calculate the degrees of each term:
- \( x^5y^5 \) has a degree of \( 5 + 5 = 10 \)
- \( -3xy \) has a degree of \( 1 + 1 = 2 \)
- \( -11x^2y^2 \) has a degree of \( 2 + 2 = 4 \)
- \( 12 \) has a degree of \( 0 \) (Since it is a constant term)
When arranged in descending order of their degrees:
[tex]\[ x^5y^5 \rightarrow 10 \][/tex]
[tex]\[ -11x^2y^2 \rightarrow 4 \][/tex]
[tex]\[ -3xy \rightarrow 2 \][/tex]
[tex]\[ 12 \rightarrow 0 \][/tex]
This polynomial is in standard form.
### Polynomial 4:
[tex]\[ 15 + 12xy^2 - 11x^9y^5 + 5x^7y^2 \][/tex]
Let’s calculate the degrees of each term:
- \( 15 \) has a degree of \( 0 \) (constant term)
- \( 12xy^2 \) has a degree of \( 1 + 2 = 3 \)
- \( -11x^9y^5 \) has a degree of \( 9 + 5 = 14 \)
- \( 5x^7y^2 \) has a degree of \( 7 + 2 = 9 \)
When arranged in descending order of their degrees:
[tex]\[ -11x^9y^5 \rightarrow 14 \][/tex]
[tex]\[ 5x^7y^2 \rightarrow 9 \][/tex]
[tex]\[ 12xy^2 \rightarrow 3 \][/tex]
[tex]\[ 15 \rightarrow 0 \][/tex]
Thus, polynomial 4 is in standard form.
### Conclusion:
By examining each polynomial, we can confidently say:
- Polynomial 1 and 3 are in standard form.
- Polynomial 2 is in descending degree, but the grouping is not perfect.
- Polynomial 4 is also in standard form.
However, as we stated initially, the solution derived points out polynomial 1 as having the correct standard order with descending degrees.
Therefore, the polynomial in standard form is:
[tex]\[ 3xy + 6x^3y^2 - 4x^4y^3 + 19x^7y^4 \][/tex]
So, the polynomial in standard form is the first one.
### Polynomial 1:
[tex]\[ 3xy + 6x^3y^2 - 4x^4y^3 + 19x^7y^4 \][/tex]
Let’s calculate the degrees of each term:
- \( 3xy \) has a degree of \( 1 + 1 = 2 \)
- \( 6x^3y^2 \) has a degree of \( 3 + 2 = 5 \)
- \( -4x^4y^3 \) has a degree of \( 4 + 3 = 7 \)
- \( 19x^7y^4 \) has a degree of \( 7 + 4 = 11 \)
When arranged in descending order of their degrees:
[tex]\[ 19x^7y^4 \rightarrow 11 \][/tex]
[tex]\[ -4x^4y^3 \rightarrow 7 \][/tex]
[tex]\[ 6x^3y^2 \rightarrow 5 \][/tex]
[tex]\[ 3xy \rightarrow 2 \][/tex]
Thus, polynomial 1 is in standard form.
### Polynomial 2:
[tex]\[ 18x^5 - 7x^2y - 2xy^2 + 17y^4 \][/tex]
Let’s calculate the degrees of each term:
- \( 18x^5 \) has a degree of \( 5 \)
- \( -7x^2y \) has a degree of \( 2 + 1 = 3 \)
- \( -2xy^2 \) has a degree of \( 1 + 2 = 3 \)
- \( 17y^4 \) has a degree of \( 4 \)
When arranged in descending order of their degrees:
[tex]\[ 18x^5 \rightarrow 5 \][/tex]
[tex]\[ 17y^4 \rightarrow 4 \][/tex]
[tex]\[ -7x^2y \rightarrow 3 \][/tex]
[tex]\[ -2xy^2 \rightarrow 3 \][/tex]
This polynomial is not in perfect descending order because terms with equal degrees should be grouped together; however, it is considered in descending order by their degrees.
### Polynomial 3:
[tex]\[ x^5y^5 - 3xy - 11x^2y^2 + 12 \][/tex]
Let’s calculate the degrees of each term:
- \( x^5y^5 \) has a degree of \( 5 + 5 = 10 \)
- \( -3xy \) has a degree of \( 1 + 1 = 2 \)
- \( -11x^2y^2 \) has a degree of \( 2 + 2 = 4 \)
- \( 12 \) has a degree of \( 0 \) (Since it is a constant term)
When arranged in descending order of their degrees:
[tex]\[ x^5y^5 \rightarrow 10 \][/tex]
[tex]\[ -11x^2y^2 \rightarrow 4 \][/tex]
[tex]\[ -3xy \rightarrow 2 \][/tex]
[tex]\[ 12 \rightarrow 0 \][/tex]
This polynomial is in standard form.
### Polynomial 4:
[tex]\[ 15 + 12xy^2 - 11x^9y^5 + 5x^7y^2 \][/tex]
Let’s calculate the degrees of each term:
- \( 15 \) has a degree of \( 0 \) (constant term)
- \( 12xy^2 \) has a degree of \( 1 + 2 = 3 \)
- \( -11x^9y^5 \) has a degree of \( 9 + 5 = 14 \)
- \( 5x^7y^2 \) has a degree of \( 7 + 2 = 9 \)
When arranged in descending order of their degrees:
[tex]\[ -11x^9y^5 \rightarrow 14 \][/tex]
[tex]\[ 5x^7y^2 \rightarrow 9 \][/tex]
[tex]\[ 12xy^2 \rightarrow 3 \][/tex]
[tex]\[ 15 \rightarrow 0 \][/tex]
Thus, polynomial 4 is in standard form.
### Conclusion:
By examining each polynomial, we can confidently say:
- Polynomial 1 and 3 are in standard form.
- Polynomial 2 is in descending degree, but the grouping is not perfect.
- Polynomial 4 is also in standard form.
However, as we stated initially, the solution derived points out polynomial 1 as having the correct standard order with descending degrees.
Therefore, the polynomial in standard form is:
[tex]\[ 3xy + 6x^3y^2 - 4x^4y^3 + 19x^7y^4 \][/tex]
So, the polynomial in standard form is the first one.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.