At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Let's analyze each of the given equations step by step and determine which ones have infinitely many solutions.
For an equation to have infinitely many solutions, both sides of the equation must be identical, meaning that they are equal for any value of \( x \).
### Equation A: \( 73x - 37 = 73x - 37 \)
- Both sides of the equation are \( 73x - 37 \).
- Since the expressions on both sides are identical regardless of the value of \( x \), this equation has infinitely many solutions.
### Equation B: \( 37x - 37 = 37x - 37 \)
- Both sides of the equation are \( 37x - 37 \).
- Since the expressions on both sides are identical regardless of the value of \( x \), this equation has infinitely many solutions.
### Equation C: \( 74x - 37 = 74x - 37 \)
- Both sides of the equation are \( 74x - 37 \).
- Since the expressions on both sides are identical regardless of the value of \( x \), this equation has infinitely many solutions.
### Equation D: \( x - 37 = x - 37 \)
- Both sides of the equation are \( x - 37 \).
- Since the expressions on both sides are identical regardless of the value of \( x \), this equation has infinitely many solutions.
To summarize, all of the provided equations have infinitely many solutions. Therefore, the correct answers are:
- A. \( 73x - 37 = 73x - 37 \)
- B. \( 37x - 37 = 37x - 37 \)
- C. \( 74x - 37 = 74x - 37 \)
- D. \( x - 37 = x - 37 \)
So the correct choices are all of the above: A, B, C, and D.
For an equation to have infinitely many solutions, both sides of the equation must be identical, meaning that they are equal for any value of \( x \).
### Equation A: \( 73x - 37 = 73x - 37 \)
- Both sides of the equation are \( 73x - 37 \).
- Since the expressions on both sides are identical regardless of the value of \( x \), this equation has infinitely many solutions.
### Equation B: \( 37x - 37 = 37x - 37 \)
- Both sides of the equation are \( 37x - 37 \).
- Since the expressions on both sides are identical regardless of the value of \( x \), this equation has infinitely many solutions.
### Equation C: \( 74x - 37 = 74x - 37 \)
- Both sides of the equation are \( 74x - 37 \).
- Since the expressions on both sides are identical regardless of the value of \( x \), this equation has infinitely many solutions.
### Equation D: \( x - 37 = x - 37 \)
- Both sides of the equation are \( x - 37 \).
- Since the expressions on both sides are identical regardless of the value of \( x \), this equation has infinitely many solutions.
To summarize, all of the provided equations have infinitely many solutions. Therefore, the correct answers are:
- A. \( 73x - 37 = 73x - 37 \)
- B. \( 37x - 37 = 37x - 37 \)
- C. \( 74x - 37 = 74x - 37 \)
- D. \( x - 37 = x - 37 \)
So the correct choices are all of the above: A, B, C, and D.
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.