Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine the correct order of masses from least to greatest, let's go through our calculations step-by-step for each container.
1. Container A (Hydrogen, cube):
- Density: 0.09 mg/cm³
- Side length: 15 cm
The volume of a cube is given by \( \text{Volume} = \text{side}^3 \).
[tex]\[ \text{Volume}_A = 15^3 = 3375 \, \text{cm}^3 \][/tex]
The mass is then calculated by \( \text{Mass} = \text{Density} \times \text{Volume} \).
[tex]\[ \text{Mass}_A = 0.09 \, \text{mg/cm}^3 \times 3375 \, \text{cm}^3 = 303.75 \, \text{mg} \][/tex]
2. Container B (Helium, rectangular prism):
- Density: 0.175 mg/cm³
- Dimensions: 14 cm, 12 cm, 10 cm
The volume of a rectangular prism is given by \( \text{Volume} = \text{length} \times \text{width} \times \text{height} \).
[tex]\[ \text{Volume}_B = 14 \times 12 \times 10 = 1680 \, \text{cm}^3 \][/tex]
The mass is then calculated by \( \text{Mass} = \text{Density} \times \text{Volume} \).
[tex]\[ \text{Mass}_B = 0.175 \, \text{mg/cm}^3 \times 1680 \, \text{cm}^3 = 294 \, \text{mg} \][/tex]
3. Container C (Nitrogen, sphere):
- Density: 1.251 mg/cm³
- Diameter: 8 cm
The volume of a sphere is given by \( \text{Volume} = \frac{4}{3} \pi \left( \frac{\text{diameter}}{2} \right)^3 \).
The radius is half of the diameter.
[tex]\[ \text{Radius}_C = \frac{8}{2} = 4 \, \text{cm} \][/tex]
[tex]\[ \text{Volume}_C = \frac{4}{3} \pi (4)^3 = \frac{4}{3} \pi \times 64 = \frac{256}{3} \pi \, \text{cm}^3 \][/tex]
The mass is then calculated by \( \text{Mass} = \text{Density} \times \text{Volume} \).
[tex]\[ \text{Mass}_C = 1.251 \, \text{mg/cm}^3 \times \frac{256}{3} \pi \approx 335.37 \, \text{mg} \][/tex]
Now that we have the masses:
- Mass of A: 303.75 mg
- Mass of B: 294 mg
- Mass of C: 335.37 mg
Arranging these from least to greatest:
[tex]\[ \boxed{B, A, C} \][/tex]
1. Container A (Hydrogen, cube):
- Density: 0.09 mg/cm³
- Side length: 15 cm
The volume of a cube is given by \( \text{Volume} = \text{side}^3 \).
[tex]\[ \text{Volume}_A = 15^3 = 3375 \, \text{cm}^3 \][/tex]
The mass is then calculated by \( \text{Mass} = \text{Density} \times \text{Volume} \).
[tex]\[ \text{Mass}_A = 0.09 \, \text{mg/cm}^3 \times 3375 \, \text{cm}^3 = 303.75 \, \text{mg} \][/tex]
2. Container B (Helium, rectangular prism):
- Density: 0.175 mg/cm³
- Dimensions: 14 cm, 12 cm, 10 cm
The volume of a rectangular prism is given by \( \text{Volume} = \text{length} \times \text{width} \times \text{height} \).
[tex]\[ \text{Volume}_B = 14 \times 12 \times 10 = 1680 \, \text{cm}^3 \][/tex]
The mass is then calculated by \( \text{Mass} = \text{Density} \times \text{Volume} \).
[tex]\[ \text{Mass}_B = 0.175 \, \text{mg/cm}^3 \times 1680 \, \text{cm}^3 = 294 \, \text{mg} \][/tex]
3. Container C (Nitrogen, sphere):
- Density: 1.251 mg/cm³
- Diameter: 8 cm
The volume of a sphere is given by \( \text{Volume} = \frac{4}{3} \pi \left( \frac{\text{diameter}}{2} \right)^3 \).
The radius is half of the diameter.
[tex]\[ \text{Radius}_C = \frac{8}{2} = 4 \, \text{cm} \][/tex]
[tex]\[ \text{Volume}_C = \frac{4}{3} \pi (4)^3 = \frac{4}{3} \pi \times 64 = \frac{256}{3} \pi \, \text{cm}^3 \][/tex]
The mass is then calculated by \( \text{Mass} = \text{Density} \times \text{Volume} \).
[tex]\[ \text{Mass}_C = 1.251 \, \text{mg/cm}^3 \times \frac{256}{3} \pi \approx 335.37 \, \text{mg} \][/tex]
Now that we have the masses:
- Mass of A: 303.75 mg
- Mass of B: 294 mg
- Mass of C: 335.37 mg
Arranging these from least to greatest:
[tex]\[ \boxed{B, A, C} \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.