Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

[tex]\[
\begin{array}{l}
ax + 3x = bx + 5 \\
x = \square
\end{array}
\][/tex]


Sagot :

Sure, let's solve the given equation step by step:

We are given the equation:
[tex]\[ ax + 3x = bx + 5 \][/tex]

Step 1: Combine like terms on the left-hand side.
[tex]\[ (a + 3)x = bx + 5 \][/tex]

Step 2: Move all terms involving \( x \) to one side of the equation. Let's subtract \( bx \) from both sides:
[tex]\[ (a + 3)x - bx = 5 \][/tex]

Step 3: Factor \( x \) out from the terms on the left-hand side:
[tex]\[ (a + 3 - b)x = 5 \][/tex]

Step 4: Solve for \( x \) by dividing both sides of the equation by \( (a + 3 - b) \):
[tex]\[ x = \frac{5}{a + 3 - b} \][/tex]

Therefore, the solution for \( x \) is:
[tex]\[ x = \frac{5}{a - b + 3} \][/tex]