Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Sure! Let's solve the given equation step by step and assume it has a solution for \( x \). The equation is:
[tex]\[ n \cdot (17 + x) = 34x - r \][/tex]
where \( x = \square + \bar{x} \).
Step 1: Expand and rearrange the equation:
[tex]\[ n \cdot 17 + n \cdot x = 34x - r \][/tex]
Step 2: Collect the \( x \) terms on one side of the equation:
[tex]\[ n \cdot 17 = 34x - r - n \cdot x \][/tex]
Step 3: Factor out the \( x \) terms on the right-hand side:
[tex]\[ n \cdot 17 = x(34 - n) - r \][/tex]
Step 4: Isolate \( x \):
[tex]\[ x(34 - n) = n \cdot 17 + r \][/tex]
[tex]\[ x = \frac{n \cdot 17 + r}{34 - n} \][/tex]
Step 5: Decompose \( x \) into its integer part (\( \square \)) and its fractional part (\( \bar{x} \)):
Let \( x = k + \bar{x} \), where \( k \) is an integer and \( 0 \leq \bar{x} < 1 \).
Thus,
[tex]\[ k = \left\lfloor \frac{n \cdot 17 + r}{34 - n} \right\rfloor \][/tex]
and
[tex]\[ \bar{x} = \frac{n \cdot 17 + r}{34 - n} - k \][/tex]
In summary, the equation:
[tex]\[ n \cdot(17 + x)=34 x-r \][/tex]
has its solution for \( x \) expressed as:
[tex]\[ x = \frac{n \cdot 17 + r}{34 - n} \][/tex]
where \( x = k + \bar{x} \):
- \( k = \left\lfloor \frac{n \cdot 17 + r}{34 - n} \right\rfloor \)
- \( \bar{x} = \frac{n \cdot 17 + r}{34 - n} - k \)
This completes the step-by-step solution for decomposing [tex]\( x \)[/tex] into its integer part and its fractional part.
[tex]\[ n \cdot (17 + x) = 34x - r \][/tex]
where \( x = \square + \bar{x} \).
Step 1: Expand and rearrange the equation:
[tex]\[ n \cdot 17 + n \cdot x = 34x - r \][/tex]
Step 2: Collect the \( x \) terms on one side of the equation:
[tex]\[ n \cdot 17 = 34x - r - n \cdot x \][/tex]
Step 3: Factor out the \( x \) terms on the right-hand side:
[tex]\[ n \cdot 17 = x(34 - n) - r \][/tex]
Step 4: Isolate \( x \):
[tex]\[ x(34 - n) = n \cdot 17 + r \][/tex]
[tex]\[ x = \frac{n \cdot 17 + r}{34 - n} \][/tex]
Step 5: Decompose \( x \) into its integer part (\( \square \)) and its fractional part (\( \bar{x} \)):
Let \( x = k + \bar{x} \), where \( k \) is an integer and \( 0 \leq \bar{x} < 1 \).
Thus,
[tex]\[ k = \left\lfloor \frac{n \cdot 17 + r}{34 - n} \right\rfloor \][/tex]
and
[tex]\[ \bar{x} = \frac{n \cdot 17 + r}{34 - n} - k \][/tex]
In summary, the equation:
[tex]\[ n \cdot(17 + x)=34 x-r \][/tex]
has its solution for \( x \) expressed as:
[tex]\[ x = \frac{n \cdot 17 + r}{34 - n} \][/tex]
where \( x = k + \bar{x} \):
- \( k = \left\lfloor \frac{n \cdot 17 + r}{34 - n} \right\rfloor \)
- \( \bar{x} = \frac{n \cdot 17 + r}{34 - n} - k \)
This completes the step-by-step solution for decomposing [tex]\( x \)[/tex] into its integer part and its fractional part.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.