Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Alright, let's analyze each of the given expressions to determine which of them are trigonometric identities.
### Expression A:
\(\tan^2 x = 1 + \sec^2 x\)
To evaluate this expression, let's use some known trigonometric identities:
[tex]\[ \tan^2 x = \sec^2 x - 1 \][/tex]
Plugging this into the left-hand side:
[tex]\[ \tan^2 x = \sec^2 x - 1 \][/tex]
Thus:
[tex]\[ \sec^2 x - 1 = 1 + \sec^2 x \][/tex]
Here, subtracting \(\sec^2 x\) from both sides yields:
[tex]\[ -1 = 1 \][/tex]
This is a contradiction, so \( \tan^2 x \neq 1 + \sec^2 x \).
Therefore, Expression A is not an identity.
### Expression B:
\(\sin^2 x = 1 - \cos^2 x\)
Rewriting \(1 - \cos^2 x\):
[tex]\[ 1 - \cos^2 x = \sin^2 x \][/tex]
This follows directly from the Pythagorean identity:
[tex]\[ \sin^2 x + \cos^2 x = 1 \][/tex]
Subtracting \(\cos^2 x\) from both sides gives:
[tex]\[ \sin^2 x = 1 - \cos^2 x \][/tex]
Therefore, Expression B is an identity.
### Expression C:
\(\sin^2 x - \cos^2 x = 1\)
Starting from the Pythagorean identity:
[tex]\[ \sin^2 x + \cos^2 x = 1 \][/tex]
Let's test the expression by substituting known angles. For example, let \(x = 0\):
[tex]\[ \sin^2 (0) - \cos^2 (0) = 0 - 1 = -1 \neq 1 \][/tex]
Therefore, the given equation does not hold for \(x = 0\).
Thus, Expression C is not an identity.
### Expression D:
\(\cot^2 x = \csc^2 x - 1\)
To analyze this, let's use known identities:
[tex]\[ \cot^2 x = \frac{\cos^2 x}{\sin^2 x} \][/tex]
and
[tex]\[ \csc^2 x = \frac{1}{\sin^2 x} \][/tex]
Rewriting the right-hand side:
[tex]\[ \csc^2 x - 1 = \frac{1}{\sin^2 x} - 1 \][/tex]
To combine into a single fraction:
[tex]\[ \frac{1}{\sin^2 x} - 1 = \frac{1 - \sin^2 x}{\sin^2 x} = \frac{\cos^2 x}{\sin^2 x} = \cot^2 x \][/tex]
Hence:
[tex]\[ \cot^2 x = \csc^2 x - 1 \][/tex]
Therefore, Expression D is an identity.
### Conclusion
Based on our evaluations, the correct identities are:
- B. \(\sin^2 x = 1 - \cos^2 x\)
- D. \(\cot^2 x = \csc^2 x - 1\)
The identities are B and D.
### Expression A:
\(\tan^2 x = 1 + \sec^2 x\)
To evaluate this expression, let's use some known trigonometric identities:
[tex]\[ \tan^2 x = \sec^2 x - 1 \][/tex]
Plugging this into the left-hand side:
[tex]\[ \tan^2 x = \sec^2 x - 1 \][/tex]
Thus:
[tex]\[ \sec^2 x - 1 = 1 + \sec^2 x \][/tex]
Here, subtracting \(\sec^2 x\) from both sides yields:
[tex]\[ -1 = 1 \][/tex]
This is a contradiction, so \( \tan^2 x \neq 1 + \sec^2 x \).
Therefore, Expression A is not an identity.
### Expression B:
\(\sin^2 x = 1 - \cos^2 x\)
Rewriting \(1 - \cos^2 x\):
[tex]\[ 1 - \cos^2 x = \sin^2 x \][/tex]
This follows directly from the Pythagorean identity:
[tex]\[ \sin^2 x + \cos^2 x = 1 \][/tex]
Subtracting \(\cos^2 x\) from both sides gives:
[tex]\[ \sin^2 x = 1 - \cos^2 x \][/tex]
Therefore, Expression B is an identity.
### Expression C:
\(\sin^2 x - \cos^2 x = 1\)
Starting from the Pythagorean identity:
[tex]\[ \sin^2 x + \cos^2 x = 1 \][/tex]
Let's test the expression by substituting known angles. For example, let \(x = 0\):
[tex]\[ \sin^2 (0) - \cos^2 (0) = 0 - 1 = -1 \neq 1 \][/tex]
Therefore, the given equation does not hold for \(x = 0\).
Thus, Expression C is not an identity.
### Expression D:
\(\cot^2 x = \csc^2 x - 1\)
To analyze this, let's use known identities:
[tex]\[ \cot^2 x = \frac{\cos^2 x}{\sin^2 x} \][/tex]
and
[tex]\[ \csc^2 x = \frac{1}{\sin^2 x} \][/tex]
Rewriting the right-hand side:
[tex]\[ \csc^2 x - 1 = \frac{1}{\sin^2 x} - 1 \][/tex]
To combine into a single fraction:
[tex]\[ \frac{1}{\sin^2 x} - 1 = \frac{1 - \sin^2 x}{\sin^2 x} = \frac{\cos^2 x}{\sin^2 x} = \cot^2 x \][/tex]
Hence:
[tex]\[ \cot^2 x = \csc^2 x - 1 \][/tex]
Therefore, Expression D is an identity.
### Conclusion
Based on our evaluations, the correct identities are:
- B. \(\sin^2 x = 1 - \cos^2 x\)
- D. \(\cot^2 x = \csc^2 x - 1\)
The identities are B and D.
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.