Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

Which of the following are identities? Check all that apply.

A. [tex]\tan ^2 x = 1 + \sec ^2 x[/tex]

B. [tex]\sin ^2 x = 1 - \cos ^2 x[/tex]

C. [tex]\sin ^2 x - \cos ^2 x = 1[/tex]

D. [tex]\cot ^2 x = \csc ^2 x - 1[/tex]


Sagot :

Alright, let's analyze each of the given expressions to determine which of them are trigonometric identities.

### Expression A:
\(\tan^2 x = 1 + \sec^2 x\)

To evaluate this expression, let's use some known trigonometric identities:
[tex]\[ \tan^2 x = \sec^2 x - 1 \][/tex]
Plugging this into the left-hand side:
[tex]\[ \tan^2 x = \sec^2 x - 1 \][/tex]
Thus:
[tex]\[ \sec^2 x - 1 = 1 + \sec^2 x \][/tex]
Here, subtracting \(\sec^2 x\) from both sides yields:
[tex]\[ -1 = 1 \][/tex]
This is a contradiction, so \( \tan^2 x \neq 1 + \sec^2 x \).

Therefore, Expression A is not an identity.

### Expression B:
\(\sin^2 x = 1 - \cos^2 x\)

Rewriting \(1 - \cos^2 x\):
[tex]\[ 1 - \cos^2 x = \sin^2 x \][/tex]
This follows directly from the Pythagorean identity:
[tex]\[ \sin^2 x + \cos^2 x = 1 \][/tex]
Subtracting \(\cos^2 x\) from both sides gives:
[tex]\[ \sin^2 x = 1 - \cos^2 x \][/tex]

Therefore, Expression B is an identity.

### Expression C:
\(\sin^2 x - \cos^2 x = 1\)

Starting from the Pythagorean identity:
[tex]\[ \sin^2 x + \cos^2 x = 1 \][/tex]
Let's test the expression by substituting known angles. For example, let \(x = 0\):
[tex]\[ \sin^2 (0) - \cos^2 (0) = 0 - 1 = -1 \neq 1 \][/tex]
Therefore, the given equation does not hold for \(x = 0\).

Thus, Expression C is not an identity.

### Expression D:
\(\cot^2 x = \csc^2 x - 1\)

To analyze this, let's use known identities:
[tex]\[ \cot^2 x = \frac{\cos^2 x}{\sin^2 x} \][/tex]
and
[tex]\[ \csc^2 x = \frac{1}{\sin^2 x} \][/tex]
Rewriting the right-hand side:
[tex]\[ \csc^2 x - 1 = \frac{1}{\sin^2 x} - 1 \][/tex]
To combine into a single fraction:
[tex]\[ \frac{1}{\sin^2 x} - 1 = \frac{1 - \sin^2 x}{\sin^2 x} = \frac{\cos^2 x}{\sin^2 x} = \cot^2 x \][/tex]
Hence:
[tex]\[ \cot^2 x = \csc^2 x - 1 \][/tex]

Therefore, Expression D is an identity.

### Conclusion

Based on our evaluations, the correct identities are:
- B. \(\sin^2 x = 1 - \cos^2 x\)
- D. \(\cot^2 x = \csc^2 x - 1\)

The identities are B and D.