Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To simplify the given expression:
[tex]\[ \frac{\left(4 m^2 n\right)^2}{2 m^2 n} \][/tex]
we'll follow a step-by-step approach.
1. Simplify the numerator:
The numerator is \((4 m^2 n)^2\).
Raise each part of the expression inside the parentheses to the power of 2:
[tex]\[ (4 m^2 n)^2 = 4^2 \cdot (m^2)^2 \cdot n^2 = 16 \cdot m^4 \cdot n^2 \][/tex]
So, the numerator becomes \(16 m^4 n^2\).
2. Simplify the denominator:
The denominator is \(2 m^2 n\).
It remains \(2 m^2 n\).
3. Divide the numerator by the denominator:
[tex]\[ \frac{16 m^4 n^2}{2 m^2 n} \][/tex]
Separate the constants, \(m\) terms, and \(n\) terms:
[tex]\[ \frac{16}{2} \cdot \frac{m^4}{m^2} \cdot \frac{n^2}{n} \][/tex]
Simplify each fraction:
- \(\frac{16}{2} = 8\)
- \(\frac{m^4}{m^2} = m^{4-2} = m^2\)
- \(\frac{n^2}{n} = n^{2-1} = n\)
Combine the simplified parts:
[tex]\[ 8 \cdot m^2 \cdot n = 8 m^2 n \][/tex]
So, the expression equivalent to the given expression is:
[tex]\[ 8 m^2 n \][/tex]
Since none of the given answers directly match \(8 m^2 n\), it seems there is either an error in the transcription of the question or answers or an inconsistency in the provided choices. Based on the detailed simplification, the correct answer is:
[tex]\[ 8 m^2 n \][/tex]
But, if we must choose from the given options, none of the provided options (A, B, C, or D) are correct.
[tex]\[ \frac{\left(4 m^2 n\right)^2}{2 m^2 n} \][/tex]
we'll follow a step-by-step approach.
1. Simplify the numerator:
The numerator is \((4 m^2 n)^2\).
Raise each part of the expression inside the parentheses to the power of 2:
[tex]\[ (4 m^2 n)^2 = 4^2 \cdot (m^2)^2 \cdot n^2 = 16 \cdot m^4 \cdot n^2 \][/tex]
So, the numerator becomes \(16 m^4 n^2\).
2. Simplify the denominator:
The denominator is \(2 m^2 n\).
It remains \(2 m^2 n\).
3. Divide the numerator by the denominator:
[tex]\[ \frac{16 m^4 n^2}{2 m^2 n} \][/tex]
Separate the constants, \(m\) terms, and \(n\) terms:
[tex]\[ \frac{16}{2} \cdot \frac{m^4}{m^2} \cdot \frac{n^2}{n} \][/tex]
Simplify each fraction:
- \(\frac{16}{2} = 8\)
- \(\frac{m^4}{m^2} = m^{4-2} = m^2\)
- \(\frac{n^2}{n} = n^{2-1} = n\)
Combine the simplified parts:
[tex]\[ 8 \cdot m^2 \cdot n = 8 m^2 n \][/tex]
So, the expression equivalent to the given expression is:
[tex]\[ 8 m^2 n \][/tex]
Since none of the given answers directly match \(8 m^2 n\), it seems there is either an error in the transcription of the question or answers or an inconsistency in the provided choices. Based on the detailed simplification, the correct answer is:
[tex]\[ 8 m^2 n \][/tex]
But, if we must choose from the given options, none of the provided options (A, B, C, or D) are correct.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.