Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To solve the quadratic equation \(x^2 - x - 56 = 0\), we can follow these steps:
1. Identify the coefficients:
The given quadratic equation is in the form \(ax^2 + bx + c = 0\). Here, the coefficients are:
- \(a = 1\)
- \(b = -1\)
- \(c = -56\)
2. Calculate the discriminant \(D\):
The discriminant of a quadratic equation \(ax^2 + bx + c = 0\) is given by the formula:
[tex]\[ D = b^2 - 4ac \][/tex]
Substituting the values of \(a\), \(b\), and \(c\):
[tex]\[ D = (-1)^2 - 4(1)(-56) = 1 + 224 = 225 \][/tex]
3. Compute the roots:
The roots of the quadratic equation can be found using the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{D}}{2a} \][/tex]
Substituting the values \(a = 1\), \(b = -1\), and \(D = 225\):
[tex]\[ x = \frac{-(-1) \pm \sqrt{225}}{2(1)} = \frac{1 \pm 15}{2} \][/tex]
This yields two solutions:
[tex]\[ x_1 = \frac{1 + 15}{2} = \frac{16}{2} = 8 \][/tex]
[tex]\[ x_2 = \frac{1 - 15}{2} = \frac{-14}{2} = -7 \][/tex]
Therefore, the solutions to the equation \(x^2 - x - 56 = 0\) are:
[tex]\[ x = 8 \quad \text{and} \quad x = -7 \][/tex]
We need to select all the correct answers from the given options:
- \(x = -7\)
- \(x = 7\)
- \(x = 0\)
- \(x = -8\)
- \(x = 8\)
The correct answers are:
[tex]\[ x = -7 \quad \text{and} \quad x = 8 \][/tex]
So, the solutions to the equation \(x^2 - x - 56 = 0\) that match the provided options are:
[tex]\(-7\)[/tex] and [tex]\(8\)[/tex].
1. Identify the coefficients:
The given quadratic equation is in the form \(ax^2 + bx + c = 0\). Here, the coefficients are:
- \(a = 1\)
- \(b = -1\)
- \(c = -56\)
2. Calculate the discriminant \(D\):
The discriminant of a quadratic equation \(ax^2 + bx + c = 0\) is given by the formula:
[tex]\[ D = b^2 - 4ac \][/tex]
Substituting the values of \(a\), \(b\), and \(c\):
[tex]\[ D = (-1)^2 - 4(1)(-56) = 1 + 224 = 225 \][/tex]
3. Compute the roots:
The roots of the quadratic equation can be found using the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{D}}{2a} \][/tex]
Substituting the values \(a = 1\), \(b = -1\), and \(D = 225\):
[tex]\[ x = \frac{-(-1) \pm \sqrt{225}}{2(1)} = \frac{1 \pm 15}{2} \][/tex]
This yields two solutions:
[tex]\[ x_1 = \frac{1 + 15}{2} = \frac{16}{2} = 8 \][/tex]
[tex]\[ x_2 = \frac{1 - 15}{2} = \frac{-14}{2} = -7 \][/tex]
Therefore, the solutions to the equation \(x^2 - x - 56 = 0\) are:
[tex]\[ x = 8 \quad \text{and} \quad x = -7 \][/tex]
We need to select all the correct answers from the given options:
- \(x = -7\)
- \(x = 7\)
- \(x = 0\)
- \(x = -8\)
- \(x = 8\)
The correct answers are:
[tex]\[ x = -7 \quad \text{and} \quad x = 8 \][/tex]
So, the solutions to the equation \(x^2 - x - 56 = 0\) that match the provided options are:
[tex]\(-7\)[/tex] and [tex]\(8\)[/tex].
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.