Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To find the coordinates of the other end of the fence, we can use the midpoint formula. The midpoint formula states that if you have a segment with endpoints \((x_1, y_1)\) and \((x_2, y_2)\), the coordinates of the midpoint \(M\) are:
[tex]\[ M = \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \][/tex]
In this problem, we are given:
- The start point \((x_1, y_1) = (8, 5)\)
- The midpoint \((M_x, M_y) = (3.5, -1)\)
We need to find the coordinates of the other end of the fence \((x_2, y_2)\).
First, we use the x-coordinates to find \(x_2\):
[tex]\[ \frac{8 + x_2}{2} = 3.5 \][/tex]
Multiply both sides by 2 to eliminate the fraction:
[tex]\[ 8 + x_2 = 7 \][/tex]
Then, solve for \(x_2\):
[tex]\[ x_2 = 7 - 8 = -1 \][/tex]
Next, we use the y-coordinates to find \(y_2\):
[tex]\[ \frac{5 + y_2}{2} = -1 \][/tex]
Multiply both sides by 2 to eliminate the fraction:
[tex]\[ 5 + y_2 = -2 \][/tex]
Then, solve for \(y_2\):
[tex]\[ y_2 = -2 - 5 = -7 \][/tex]
Thus, the coordinates of the other end of the fence are \((-1, -7)\).
The correct answer is:
[tex]\[ \boxed{(-1, -7)} \][/tex]
[tex]\[ M = \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \][/tex]
In this problem, we are given:
- The start point \((x_1, y_1) = (8, 5)\)
- The midpoint \((M_x, M_y) = (3.5, -1)\)
We need to find the coordinates of the other end of the fence \((x_2, y_2)\).
First, we use the x-coordinates to find \(x_2\):
[tex]\[ \frac{8 + x_2}{2} = 3.5 \][/tex]
Multiply both sides by 2 to eliminate the fraction:
[tex]\[ 8 + x_2 = 7 \][/tex]
Then, solve for \(x_2\):
[tex]\[ x_2 = 7 - 8 = -1 \][/tex]
Next, we use the y-coordinates to find \(y_2\):
[tex]\[ \frac{5 + y_2}{2} = -1 \][/tex]
Multiply both sides by 2 to eliminate the fraction:
[tex]\[ 5 + y_2 = -2 \][/tex]
Then, solve for \(y_2\):
[tex]\[ y_2 = -2 - 5 = -7 \][/tex]
Thus, the coordinates of the other end of the fence are \((-1, -7)\).
The correct answer is:
[tex]\[ \boxed{(-1, -7)} \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.