Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Certainly! Let's solve this problem step-by-step.
We have a cube with a side length of 4 inches and a mass of 5 pounds. We need to find the density of the cube in \(\text{kg/m}^3\).
### Step 1: Convert the side length from inches to meters
First, we convert the side length from inches to millimeters:
[tex]\[ 4 \text{ inches} \times 25 \frac{\text{mm}}{\text{inch}} = 100 \text{ mm} \][/tex]
Next, we convert millimeters to meters by knowing that there are 1,000 millimeters in a meter:
[tex]\[ 100 \text{ mm} \times \frac{1 \text{ m}}{1000 \text{ mm}} = 0.1 \text{ m} \][/tex]
So, the side length of the cube is \(0.1 \text{ meters}\).
### Step 2: Convert the mass from pounds to kilograms
We know that:
[tex]\[ 1 \text{ lb} = 450 \text{ g} \][/tex]
Thus, converting 5 pounds to grams:
[tex]\[ 5 \text{ lbs} \times 450 \frac{\text{g}}{\text{lb}} = 2250 \text{ g} \][/tex]
Next, convert grams to kilograms by noting that there are 1,000 grams in a kilogram:
[tex]\[ 2250 \text{ g} \times \frac{1 \text{ kg}}{1000 \text{ g}} = 2.25 \text{ kg} \][/tex]
So, the mass of the cube is \(2.25 \text{ kilograms}\).
### Step 3: Calculate the volume of the cube in cubic meters
The volume \(V\) of a cube is found using the formula \(V = \text{side}^3\):
[tex]\[ V = (0.1 \text{ m})^3 = 0.001 \text{ m}^3 \][/tex]
### Step 4: Calculate the density in \(\text{kg/m}^3\)
Density \(\rho\) is defined as mass (\(m\)) per unit volume (\(V\)):
[tex]\[ \rho = \frac{m}{V} \][/tex]
Substituting the values we obtained:
[tex]\[ \rho = \frac{2.25 \text{ kg}}{0.001 \text{ m}^3} = 2250 \text{ kg/m}^3 \][/tex]
Therefore, the density of the cube is [tex]\(2250 \text{ kg/m}^3\)[/tex].
We have a cube with a side length of 4 inches and a mass of 5 pounds. We need to find the density of the cube in \(\text{kg/m}^3\).
### Step 1: Convert the side length from inches to meters
First, we convert the side length from inches to millimeters:
[tex]\[ 4 \text{ inches} \times 25 \frac{\text{mm}}{\text{inch}} = 100 \text{ mm} \][/tex]
Next, we convert millimeters to meters by knowing that there are 1,000 millimeters in a meter:
[tex]\[ 100 \text{ mm} \times \frac{1 \text{ m}}{1000 \text{ mm}} = 0.1 \text{ m} \][/tex]
So, the side length of the cube is \(0.1 \text{ meters}\).
### Step 2: Convert the mass from pounds to kilograms
We know that:
[tex]\[ 1 \text{ lb} = 450 \text{ g} \][/tex]
Thus, converting 5 pounds to grams:
[tex]\[ 5 \text{ lbs} \times 450 \frac{\text{g}}{\text{lb}} = 2250 \text{ g} \][/tex]
Next, convert grams to kilograms by noting that there are 1,000 grams in a kilogram:
[tex]\[ 2250 \text{ g} \times \frac{1 \text{ kg}}{1000 \text{ g}} = 2.25 \text{ kg} \][/tex]
So, the mass of the cube is \(2.25 \text{ kilograms}\).
### Step 3: Calculate the volume of the cube in cubic meters
The volume \(V\) of a cube is found using the formula \(V = \text{side}^3\):
[tex]\[ V = (0.1 \text{ m})^3 = 0.001 \text{ m}^3 \][/tex]
### Step 4: Calculate the density in \(\text{kg/m}^3\)
Density \(\rho\) is defined as mass (\(m\)) per unit volume (\(V\)):
[tex]\[ \rho = \frac{m}{V} \][/tex]
Substituting the values we obtained:
[tex]\[ \rho = \frac{2.25 \text{ kg}}{0.001 \text{ m}^3} = 2250 \text{ kg/m}^3 \][/tex]
Therefore, the density of the cube is [tex]\(2250 \text{ kg/m}^3\)[/tex].
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.