At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To factor the polynomial function \( b(x) = x^3 + 2x^2 - 9x - 18 \), we follow these steps:
1. Identify the Polynomial:
We start with the polynomial \( b(x) = x^3 + 2x^2 - 9x - 18 \).
2. Find Rational Roots:
Using the Rational Root Theorem, we consider all possible rational roots of the polynomial, which are the factors of the constant term (-18) divided by the factors of the leading coefficient (1). These factors are:
[tex]\[ \text{Potential Roots:} \quad \pm 1, \pm 2, \pm 3, \pm 6, \pm 9, \pm 18 \][/tex]
Let's test these roots by substituting them into the polynomial until we find a root that results in the polynomial equating to zero.
3. Test Roots (picked conveniently for the solution):
- Testing \( x = 3 \):
[tex]\[ b(3) = 3^3 + 2(3^2) - 9(3) - 18 = 27 + 18 - 27 - 18 = 0 \][/tex]
Since \( b(3) = 0 \), \( x = 3 \) is a root.
4. Factor Out the Root:
Since \( x = 3 \) is a root, we can factor out \( (x - 3) \). We then perform polynomial division to divide \( b(x) \) by \( (x - 3) \):
[tex]\[ \frac{x^3 + 2x^2 - 9x - 18}{x - 3} \][/tex]
Performing the division, we get:
[tex]\[ x^2 + 5x + 6 \][/tex]
5. Factor the Quotient \( x^2 + 5x + 6 \):
We now factor \( x^2 + 5x + 6 \) which can be factored into:
[tex]\[ (x + 2)(x + 3) \][/tex]
6. Write the Fully Factored Form:
Combining all the factors, the fully factored form of the polynomial is:
[tex]\[ b(x) = (x - 3)(x + 2)(x + 3) \][/tex]
Thus, the factored form of the polynomial [tex]\( b(x) = x^3 + 2x^2 - 9x - 18 \)[/tex] is [tex]\((x - 3)(x + 2)(x + 3)\)[/tex].
1. Identify the Polynomial:
We start with the polynomial \( b(x) = x^3 + 2x^2 - 9x - 18 \).
2. Find Rational Roots:
Using the Rational Root Theorem, we consider all possible rational roots of the polynomial, which are the factors of the constant term (-18) divided by the factors of the leading coefficient (1). These factors are:
[tex]\[ \text{Potential Roots:} \quad \pm 1, \pm 2, \pm 3, \pm 6, \pm 9, \pm 18 \][/tex]
Let's test these roots by substituting them into the polynomial until we find a root that results in the polynomial equating to zero.
3. Test Roots (picked conveniently for the solution):
- Testing \( x = 3 \):
[tex]\[ b(3) = 3^3 + 2(3^2) - 9(3) - 18 = 27 + 18 - 27 - 18 = 0 \][/tex]
Since \( b(3) = 0 \), \( x = 3 \) is a root.
4. Factor Out the Root:
Since \( x = 3 \) is a root, we can factor out \( (x - 3) \). We then perform polynomial division to divide \( b(x) \) by \( (x - 3) \):
[tex]\[ \frac{x^3 + 2x^2 - 9x - 18}{x - 3} \][/tex]
Performing the division, we get:
[tex]\[ x^2 + 5x + 6 \][/tex]
5. Factor the Quotient \( x^2 + 5x + 6 \):
We now factor \( x^2 + 5x + 6 \) which can be factored into:
[tex]\[ (x + 2)(x + 3) \][/tex]
6. Write the Fully Factored Form:
Combining all the factors, the fully factored form of the polynomial is:
[tex]\[ b(x) = (x - 3)(x + 2)(x + 3) \][/tex]
Thus, the factored form of the polynomial [tex]\( b(x) = x^3 + 2x^2 - 9x - 18 \)[/tex] is [tex]\((x - 3)(x + 2)(x + 3)\)[/tex].
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.