Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine which side of a triangular rooftop terrace (modeled by triangle \(ABC\)) has the greatest length, we can use the properties of triangles and angle-side relationships. Specifically, we will utilize the Law of Sines and the property that in any triangle, the side opposite the largest angle is the longest.
In triangle \(ABC\):
- The measure of \(\angle A\) is \(55^\circ\).
- The measure of \(\angle B\) is \(65^\circ\).
- The measure of \(\angle C\) is \(60^\circ\).
Step-by-step, here is how we can determine which side is the longest:
1. Identify the Largest Angle:
We compare the given angle measures:
- \(\angle A = 55^\circ\)
- \(\angle B = 65^\circ\)
- \(\angle C = 60^\circ\)
Clearly, \(\angle B = 65^\circ\) is the largest angle among \(\angle A\), \(\angle B\), and \(\angle C\).
2. Determine the Side Opposite the Largest Angle:
In any triangle, the side opposite the largest angle is the longest. For our triangle \(ABC\):
- The side opposite \(\angle A\) (\(55^\circ\)) is \(\overline{BC}\).
- The side opposite \(\angle B\) (\(65^\circ\)) is \(\overline{AC}\).
- The side opposite \(\angle C\) (\(60^\circ\)) is \(\overline{AB}\).
Since \(\angle B\) (\(65^\circ\)) is the largest angle, the longest side is \(\overline{AC}\).
Thus, the correct answer is:
[tex]\[ \boxed{\overline{AC}} \][/tex]
So, the side of the terrace with the greatest length is \(\overline{AC}\). Therefore, the final answer is:
A. [tex]\(\overline{AC}\)[/tex].
In triangle \(ABC\):
- The measure of \(\angle A\) is \(55^\circ\).
- The measure of \(\angle B\) is \(65^\circ\).
- The measure of \(\angle C\) is \(60^\circ\).
Step-by-step, here is how we can determine which side is the longest:
1. Identify the Largest Angle:
We compare the given angle measures:
- \(\angle A = 55^\circ\)
- \(\angle B = 65^\circ\)
- \(\angle C = 60^\circ\)
Clearly, \(\angle B = 65^\circ\) is the largest angle among \(\angle A\), \(\angle B\), and \(\angle C\).
2. Determine the Side Opposite the Largest Angle:
In any triangle, the side opposite the largest angle is the longest. For our triangle \(ABC\):
- The side opposite \(\angle A\) (\(55^\circ\)) is \(\overline{BC}\).
- The side opposite \(\angle B\) (\(65^\circ\)) is \(\overline{AC}\).
- The side opposite \(\angle C\) (\(60^\circ\)) is \(\overline{AB}\).
Since \(\angle B\) (\(65^\circ\)) is the largest angle, the longest side is \(\overline{AC}\).
Thus, the correct answer is:
[tex]\[ \boxed{\overline{AC}} \][/tex]
So, the side of the terrace with the greatest length is \(\overline{AC}\). Therefore, the final answer is:
A. [tex]\(\overline{AC}\)[/tex].
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.